Skip to Content
Merck
  • NHERF-1 regulation of EGF and neurotensin signalling in HT-29 epithelial cells.

NHERF-1 regulation of EGF and neurotensin signalling in HT-29 epithelial cells.

Biochemical and biophysical research communications (2013-03-05)
Wade A Kruger, Gregory R Monteith, Philip Poronnik
ABSTRACT

Neurotensin receptors (NT-R) and the epidermal growth factor receptors (EGF-R) are commonly overexpressed in many epithelial origin tumours. In addition to their role as mitogenic mediators through specific cell signalling, recent studies indicate that the activity/expression of scaffold proteins responsible for the assembly and coordination of the signalling complexes may also have central roles in epithelial transformation. In particular, the "epithelial" PSD-95/Dlg/Zo-1 (PDZ) scaffold/adapter protein, Na(+)/H(+) exchanger regulatory factor isoform one (NHERF-1), has been identified as a potential regulator of cellular transformation. NHERF-1 is a known regulator of EGF-R function and plays numerous roles in G-protein-coupled receptor signalling. Because of the synergistic signalling between these two potent mitogens, we investigated a potential role for NHERF-1 in the molecular mechanism linking the aberrant proliferative phenotype initiated by some G-Protein-coupled receptor activators in the colon adenocarcinoma HT-29 cell line. Knockdown (80%) of endogenous NHERF-1 leads to significant reduction in proliferation rate; an effect that could not be recovered by exogenous application of either NT or EGF. Inhibition of the EGF-R with AG1487 also inhibited proliferation and this effect could not be recovered with NT. Knockdown of NHERF-1 significantly altered the expression of the EGF-R, and almost completely abolished the NT-mediated increases in intracellular free Ca(2+). Knockdown of NHERF-1 also attenuated UTP-mediated purinergic Ca(2+) signalling. Taken together, these data suggest that NHERF-1 plays a more central role in cell proliferation by modulating Gq-mediated signalling pathways.