- Sorption mechanisms of cephapirin, a veterinary antibiotic, onto quartz and feldspar minerals as detected by Raman spectroscopy.
Sorption mechanisms of cephapirin, a veterinary antibiotic, onto quartz and feldspar minerals as detected by Raman spectroscopy.
Raman spectroscopy was used to investigate sorption mechanisms of cephapirin (CHP), a veterinary antibiotic, onto quartz (SiO(2)) and feldspar (KAlSi(3)O(8)) at different pH. Sorption occurs by electrostatic attraction, monodentate and bidentate complexation. The zwitterion (CHP(o)) adsorbs to a quartz((+)) surface by electrostatic attraction of the carboxylate anion group (-COO(-)) at low pH, but adsorbs to a quartz((-)) surface through electrostatic attraction of the pyridinium cation, and possibly COO(-) bridge complexes, at higher pH. CHP(-) bonds to quartz((-)) surfaces by bidentate complexation between one oxygen of -COO(-) and oxygen from carbonyl of an acetoxymethyl group. On a feldspar((+/-)) surface, CHP(o) forms monodentate complexes between CO, and possible -COO(-) bridges and/or electrostatic attachments to localized edge (hydr)oxy-Al surfaces. CHP(-) adsorbs to feldspar((-)) through monodentate CO complexation. Similar mechanisms may operate for other cephalosporins. Results demonstrate, for the first time, that Raman techniques can be effective for evaluating sorption mechanisms of antibiotics.