Skip to Content
Merck

Reduction of graphene oxide via bacterial respiration.

ACS nano (2010-08-25)
Everett C Salas, Zhengzong Sun, Andreas Lüttge, James M Tour
ABSTRACT

Here we present that graphene oxide (GO) can act as a terminal electron acceptor for heterotrophic, metal-reducing, and environmental bacteria. The conductance and physical characteristics of bacterially converted graphene (BCG) are comparable to other forms of chemically converted graphene (CCG). Electron transfer to GO is mediated by cytochromes MtrA, MtrB, and MtrC/OmcA, while mutants lacking CymA, another cytochrome associated with extracellular electron transfer, retain the ability to reduce GO. Our results demonstrate that biodegradation of GO can occur under ambient conditions and at rapid time scales. The capacity of microbes to degrade GO, restoring it to the naturally occurring ubiquitous graphite mineral form, presents a positive prospect for its bioremediation. This capability also provides an opportunity for further investigation into the application of environmental bacteria in the area of green nanochemistries.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Nitrogen/Sulfur co-doped graphene oxide powder, bio-sourced
Sigma-Aldrich
Nitrogen doped graphene oxide powder, bio-sourced