Skip to Content
Merck
  • RSPO2 inhibits BMP signaling to promote self-renewal in acute myeloid leukemia.

RSPO2 inhibits BMP signaling to promote self-renewal in acute myeloid leukemia.

Cell reports (2021-08-19)
Rui Sun, Lixiazi He, Hyeyoon Lee, Andrey Glinka, Carolin Andresen, Daniel Hübschmann, Irmela Jeremias, Karin Müller-Decker, Caroline Pabst, Christof Niehrs
ABSTRACT

Acute myeloid leukemia (AML) is a rapidly progressing cancer, for which chemotherapy remains standard treatment and additional therapeutic targets are requisite. Here, we show that AML cells secrete the stem cell growth factor R-spondin 2 (RSPO2) to promote their self-renewal and prevent cell differentiation. Although RSPO2 is a well-known WNT agonist, we reveal that it maintains AML self-renewal WNT independently, by inhibiting BMP receptor signaling. Autocrine RSPO2 signaling is also required to prevent differentiation and to promote self-renewal in normal hematopoietic stem cells as well as primary AML cells. Comprehensive datamining reveals that RSPO2 expression is elevated in patients with AML of poor prognosis. Consistently, inhibiting RSPO2 prolongs survival in AML mouse xenograft models. Our study indicates that in AML, RSPO2 acts as an autocrine BMP antagonist to promote cancer cell renewal and may serve as a marker for poor prognosis.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
L-Glutamine solution, 200 mM, solution, sterile-filtered, BioXtra, suitable for cell culture
Sigma-Aldrich
Sodium pyruvate solution, 100 mM, sterile-filtered, BioReagent, suitable for cell culture
Sigma-Aldrich
Penicillin-Streptomycin, with 10,000 units penicillin and 10 mg streptomycin per mL in 0.9% NaCl, 0.1 μm filtered, BioReagent, suitable for cell culture
Sigma-Aldrich
Polybrene Infection / Transfection Reagent, A highly efficient method of gene transfer into mammalian cells leveraging infection with retroviral vectors.
Sigma-Aldrich
DMH2, ≥98% (HPLC)