Skip to Content
Merck
  • Production of Polyhydroxyalkanoates Copolymers by Recombinant Pseudomonas in Plasmid- and Antibiotic-Free Cultures.

Production of Polyhydroxyalkanoates Copolymers by Recombinant Pseudomonas in Plasmid- and Antibiotic-Free Cultures.

Journal of molecular microbiology and biotechnology (2019-02-21)
Edmar Ramos Oliveira-Filho, Linda P Guamán, Thatiane Teixeira Mendonça, Paul F Long, Marilda Keico Taciro, José Gregório Cabrera Gomez, Luiziana F Silva
ABSTRACT

Three different polyhydroxyalkanoate (PHA) synthase genes (Ralstonia eutropha H16, Aeromonas sp. TSM81 or Aeromonas hydrophila ATCC7966 phaC) were introduced into the chromosome of two Pseudomonas strains: a native medium-chain-length 3-polyhydroxyalkanoate (PHAMCL) producer (Pseudomonas sp. LFM046) and a UV-induced mutant strain unable to produce PHA (Pseudomonas sp. LFM461). We reported for the first time the insertion of a chromosomal copy of phaC using the transposon system mini-Tn7. Stable antibiotic marker-free and plasmid-free recombinants were obtained. Subsequently, P(3HB-co-3HAMCL) was produced by these recombinants using glucose as the sole carbon source, without the need for co-substrates and under antibiotic-free conditions. A recombinant harboring A. hydrophila phaC produced a terpolyester composed of 84.2 mol% of 3-hydroxybutyrate, 6.3 mol% of 3-hydroxyhexanoate, and 9.5 mol% of 3-hydroxydecanoate from only glucose. Hence, we were successful in increasing the industrial potential of Pseudomonas sp. LFM461 strain by producing PHA copolymers containing 3HB and 3HAMCL using an unrelated carbon source, for the first time in a plasmid- and antibiotic-free bioprocess.