Skip to Content
Merck
  • The order of concurrent endurance and resistance exercise modifies mTOR signaling and protein synthesis in rat skeletal muscle.

The order of concurrent endurance and resistance exercise modifies mTOR signaling and protein synthesis in rat skeletal muscle.

American journal of physiology. Endocrinology and metabolism (2014-04-03)
Riki Ogasawara, Koji Sato, Kenji Matsutani, Koichi Nakazato, Satoshi Fujita
ABSTRACT

Concurrent training, a combination of endurance (EE) and resistance exercise (RE) performed in succession, may compromise the muscle hypertrophic adaptations induced by RE alone. However, little is known about the molecular signaling interactions underlying the changes in skeletal muscle adaptation during concurrent training. Here, we used an animal model to investigate whether EE before or after RE affects the molecular signaling associated with muscle protein synthesis, specifically the interaction between RE-induced mammalian target of rapamycin complex 1 (mTORC1) signaling and EE-induced AMP-activated protein kinase (AMPK) signaling. Male Sprague-Dawley rats were divided into five groups: an EE group (treadmill, 25 m/min, 60 min), an RE group (maximum isometric contraction via percutaneous electrical stimulation for 3 × 10 s, 5 sets), an EE before RE group, an EE after RE group, and a nonexercise control group. Phosphorylation of p70S6K, a marker of mTORC1 activity, was significantly increased 3 h after RE in both the EE before RE and EE after RE groups, but the increase was smaller in latter. Furthermore, protein synthesis was greatly increased 6 h after RE in the EE before RE group. Increases in the phosphorylation of AMPK and Raptor were observed only in the EE after RE group. Akt and mTOR phosphorylation were increased in both groups, with no between-group differences. Our results suggest that the last bout of exercise dictates the molecular responses and that mTORC1 signaling induced by any prior bout of RE may be downregulated by a subsequent bout of EE.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Human IGF-I R ELISA Kit, for serum, plasma, cell culture supernatant and urine
Sigma-Aldrich
Mouse IGF-I ELISA Kit, for serum, plasma and cell culture supernatant
Sigma-Aldrich
Human IGF-I ELISA Kit, for serum, plasma, cell culture supernatant and urine
Sigma-Aldrich
Sodium deoxycholate, BioXtra, ≥98.0% (dry matter, NT)
Sigma-Aldrich
Sodium deoxycholate, ≥97% (titration)
SAFC
Sodium deoxycholate