Skip to Content
Merck

Tissue-specific gene delivery via nanoparticle coating.

Biomaterials (2009-10-24)
Todd J Harris, Jordan J Green, Peter W Fung, Robert Langer, Daniel G Anderson, Sangeeta N Bhatia
ABSTRACT

The use of biomaterials for gene delivery can potentially avoid many of the safety concerns with viral gene delivery. However, the efficacy of polymeric gene delivery methods is low, particularly in vivo. One significant concern is that the interior and exterior composition of polymeric gene delivery nanoparticles are often coupled, with a single polymer backbone governing all functions from biophysical properties of the polymer/DNA particle to DNA condensation and release. In this work we develop electrostatically adsorbed poly(glutamic acid)-based peptide coatings to alter the exterior composition of a core gene delivery particle and thereby affect tissue-specificity of gene delivery function in vivo. We find that with all coating formulations tested, the coatings reduce potential toxicity associated with uncoated cationic gene delivery nanoparticles following systemic injection. Particles coated with a low 2.5:1 peptide:DNA weight ratio (w/w) form large 2 micro sized particles in the presence of serum that can facilitate specific gene delivery to the liver. The same particles coated at a higher 20:1w/w form small 200nm particles in the presence of serum that can facilitate specific gene delivery to the spleen and bone marrow. Thus, variations in nanoparticle peptide coating density can alter the tissue-specificity of gene delivery in vivo.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Tetrahydrofuran, reagent grade, ≥99.0%, contains 250 ppm BHT as inhibitor
Sigma-Aldrich
Tetrahydrofuran, contains 250 ppm BHT as inhibitor, puriss. p.a., ACS reagent, reag. Ph. Eur., ≥99.9%
Sigma-Aldrich
Tetrahydrofuran, inhibitor-free, suitable for HPLC, ≥99.9%