Skip to Content
Merck
  • Engineering rhizobial bioinoculants: a strategy to improve iron nutrition.

Engineering rhizobial bioinoculants: a strategy to improve iron nutrition.

TheScientificWorldJournal (2013-12-10)
S J Geetha, Sanket J Joshi
ABSTRACT

Under field conditions, inoculated rhizobial strains are at a survival disadvantage as compared to indigenous strains. In order to out-compete native rhizobia it is not only important to develop strong nodulation efficiency but also increase their competence in the soil and rhizosphere. Competitive survival of the inoculated strain may be improved by employing strain selection and by genetic engineering of superior nitrogen fixing strains. Iron sufficiency is an important factor determining the survival and nodulation by rhizobia in soil. Siderophores, a class of ferric specific ligands that are involved in receptor specific iron transport into bacteria, constitute an important part of iron acquisition systems in rhizobia and have been shown to play a role in symbiosis as well as in saprophytic survival. Soils predominantly have iron bound to hydroxamate siderophores, a pool that is largely unavailable to catecholate-utilizing rhizobia. Outer membrane receptors for uptake of ferric hydroxamates include FhuA and FegA which are specific for ferrichrome siderophore. Increase in nodule occupancy and enhanced plant growth of the fegA and fhuA expressing engineered bioinoculants rhizobial strain have been reported. Engineering rhizobia for developing effective bioinoculants with improved ability to utilize heterologous siderophores could provide them with better iron acquisition ability and consequently, rhizospheric stability.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Iron, foil, thickness 0.1 mm, ≥99.9% trace metals basis
Sigma-Aldrich
Iron, chips, 99.98% trace metals basis
Sigma-Aldrich
Iron, puriss. p.a., carbonyl-Iron powder, low in magnesium and manganese compounds, ≥99.5% (RT)
Iron, IRMM®, certified reference material, 0.5 mm wire
Sigma-Aldrich
Iron, powder, −325 mesh, 97%
Iron, tube, 500mm, outside diameter 12.7mm, inside diameter 9.5mm, wall thickness 1.6mm, annealed, 99.5%
Iron, tube, 1000mm, outside diameter 3.2mm, inside diameter 2.2mm, wall thickness 0.5mm, as drawn, 99.8%
Iron, wire reel, 0.1m, diameter 0.5mm, hard, 99.99+%
Iron, foil, 25mm disks, thickness 0.015mm, 99.85%
Iron, foil, 15mm disks, thickness 0.1mm, hard, 99.5%
Iron, foil, 25mm disks, thickness 0.01mm, 99.99+%
Iron, foil, 20m coil, thickness 0.038mm, hard, 99.5%
Iron, foil, 25mm disks, thickness 0.05mm, hard, 99.5%
Iron, foil, 10mm disks, thickness 0.38mm, hard, 99.5%
Iron, foil, 25mm disks, thickness 0.05mm, as rolled, 99.99+%
Iron, foil, 50mm disks, thickness 0.038mm, hard, 99.5%
Iron, foil, 10mm disks, thickness 0.9mm, as rolled, 99.5%
Iron, foil, 25mm disks, thickness 0.125mm, hard, 99.5%
Iron, foil, 1m coil, thickness 0.05mm, hard, 99.5%
Iron, foil, 1m coil, thickness 0.38mm, hard, 99.5%
Iron, foil, 4mm disks, thickness 0.025mm, as rolled, 99.99+%
Iron, foil, 50mm disks, thickness 0.075mm, hard, 99.5%
Iron, foil, 4mm disks, thickness 0.20mm, hard, 99.5%
Iron, foil, 4mm disks, thickness 0.5mm, hard, 99.5%
Iron, foil, 4mm disks, thickness 0.9mm, as rolled, 99.5%
Iron, wire reel, 0.05m, diameter 0.5mm, as drawn, 99.998%
Iron, foil, not light tested, 100x100mm, thickness 0.007mm, 99.85%
Iron, foil, light tested, 100x100mm, thickness 0.038mm, hard, 99.5%
Iron, foil, not light tested, 100x100mm, thickness 0.003mm, 99.85%
Iron, rod, 100mm, diameter 25mm, as drawn, 98+%