Skip to Content
Merck

Deep learning-based molecular morphometrics for kidney biopsies.

JCI insight (2021-03-12)
Marina Zimmermann, Martin Klaus, Milagros N Wong, Ann-Katrin Thebille, Lukas Gernhold, Christoph Kuppe, Maurice Halder, Jennifer Kranz, Nicola Wanner, Fabian Braun, Sonia Wulf, Thorsten Wiech, Ulf Panzer, Christian F Krebs, Elion Hoxha, Rafael Kramann, Tobias B Huber, Stefan Bonn, Victor G Puelles
ABSTRACT

Morphologic examination of tissue biopsies is essential for histopathological diagnosis. However, accurate and scalable cellular quantification in human samples remains challenging. Here, we present a deep learning-based approach for antigen-specific cellular morphometrics in human kidney biopsies, which combines indirect immunofluorescence imaging with U-Net-based architectures for image-to-image translation and dual segmentation tasks, achieving human-level accuracy. In the kidney, podocyte loss represents a hallmark of glomerular injury and can be estimated in diagnostic biopsies. Thus, we profiled over 27,000 podocytes from 110 human samples, including patients with antineutrophil cytoplasmic antibody-associated glomerulonephritis (ANCA-GN), an immune-mediated disease with aggressive glomerular damage and irreversible loss of kidney function. We identified previously unknown morphometric signatures of podocyte depletion in patients with ANCA-GN, which allowed patient classification and, in combination with routine clinical tools, showed potential for risk stratification. Our approach enables robust and scalable molecular morphometric analysis of human tissues, yielding deeper biological insights into the human kidney pathophysiology.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Anti-DACH1 antibody produced in rabbit, Prestige Antibodies® Powered by Atlas Antibodies, affinity isolated antibody, buffered aqueous glycerol solution
Sigma-Aldrich
DAPI, for nucleic acid staining