Skip to Content
Merck
  • A nanocomposite prepared from reduced graphene oxide, gold nanoparticles and poly(2-amino-5-mercapto-1,3,4-thiadiazole) for use in an electrochemical sensor for doxorubicin.

A nanocomposite prepared from reduced graphene oxide, gold nanoparticles and poly(2-amino-5-mercapto-1,3,4-thiadiazole) for use in an electrochemical sensor for doxorubicin.

Mikrochimica acta (2019-08-25)
Mohammad Hossein Ghanbari, Faezeh Shahdost-Fard, Hamid Salehzadeh, Mohammad Reza Ganjali, Maryam Iman, Mehdi Rahimi-Nasrabadi, Farhad Ahmadi
ABSTRACT

A nanocomposite was prepared with reduced graphene oxide, gold nanoparticles and an electropolymerized film made from 2-amino-5-mercapto-1,3,4-thiadiazole. An electrochemical sensor for doxorubicin (DOX) was constructed by modifying a glassy carbon electrode (GCE) with the nanocomposite. The modified GCE was studied by electrochemical techniques which showed it to enable highly sensitive sensing of DOX. Response (typically measured at a typical working potential of -0.56 V vs. Ag/AgCl) is linear in the 30 pM to 30 nM and 30 nM to 30 μM DOX concentration ranges, with a limit of detection (LOD) of 9 pM (at an S/N ratio of 3). The method was applied to the determination of DOX in serum and gave recoveries that ranged between 92 and 108%. Graphical abstract A combination of materials consisting of reduced graphene oxide (rGO), gold nanoparticles (AuNPs) and an electropolymerized film of 2-amino-5-mercapto-1,3,4-thiadiazole (poly-AMT, PAMT) is described. The nanocomposite was placed on a glassy carbon elkectrode (GCE) in order to fabricate an electrochemical sensor for doxorubicin (DOX).