- Molecular Mechanisms of Colistin Resistance Among Pandrug-Resistant Isolates of Acinetobacter baumannii with High Case-Fatality Rate in Intensive Care Unit Patients.
Molecular Mechanisms of Colistin Resistance Among Pandrug-Resistant Isolates of Acinetobacter baumannii with High Case-Fatality Rate in Intensive Care Unit Patients.
Colistin is considered a last-hope antibiotic against extensively drug-resistant isolates of Acinetobacter baumannii. Resistance to colistin has been rarely reported for A. baumannii. Genetic alterations in the PmrA-PmrB two-component system and lipid A biosynthesis genes may be associated with colistin resistance. We investigated molecular mechanisms of colistin resistance in three clinical colistin-resistant (ColR) and two colistin-susceptible (ColS) A. baumannii isolates. A ColR mutant was generated in vitro by repetitive drug exposure. The pmrA, pmrB, lpxA, lpxC, and lpxD genes were amplified and sequenced. To evaluate association between colistin resistance and upregulation of pmrCAB operon, transcriptional level of the pmrC gene encoding for lipid A phosphoethanolamine (PEtN) transferase was quantified by reverse transcription quantitative PCR (RT-qPCR) analysis. All clinical and in vitro-selected ColR isolates harbored at least one point mutation in the pmrB gene, including A142V, P233S, T235I, and A227V substitutions as well as duplication of H325. No alteration was found in the pmrA and other amino acid substitutions identified in the pmrB as well as lpx genes did not seem to be involved in colistin resistance as they were found in both ColS and ColR isolates. RT-qPCR analysis revealed a correlation between colistin resistance and pmrC overexpression. Specific alterations in the PmrB, linked to overproduction of PEtN transferase, triggered colistin resistance in the studied A. baumannii isolates.