Skip to Content
Merck

Organic Reaction Toolbox

An organic reaction toolbox offers a set of useful tools for the synthesis of small molecules

An organic reaction toolbox is a way to organize useful chemical reactions needed for solving synthetic problems and developing new small molecules. When creating a synthetic pathway, a chemist utilizes numerous reactions to transfer one small molecule into a new one. By using protecting groups and creating molecular complexity more directly, detours to pathways can be avoided. Typically, these reactions are characterized into three broad buckets which determine how the reactants combine to form other products.

The first bucket focuses on the predictable reaction characteristics of the 19 main functional groups (alkane, alkene, alkyne, alkyl halide, alcohol, ether, thiol, sulfide, ketone, aldehyde, carboxylic acid, ester, acyl halide, acid anhydride, amide, amine, nitrile, epoxide, and aryl). These characteristics determine the reactivity properties when present on a molecule. By focusing on the reactions that can be used for a specific functional group, a scientist limits the reaction options to those plausible for the desired transformation.



Featured Categories

Buchwald precatalysts activation scheme
Buchwald Catalysts & Ligands

Buchwald Catalysts and Ligands are highly active and versatile palladium precatalysts and biarylphosphine ligands used in cross-coupling reactions for the formation of C-C, C–N, C–O, C–F, C–CF3, and C–S bonds.

View Products
Photoreactor in organic synthesis lab for photoredox catalysis.
Photocatalysts

Photocatalysis utilizes visible light to activate a chemical reaction. Our extensive portfolio of catalysts and photoreactors enable consistent reactions in photoredox catalysis.

Shop Products
Catalysts schematic workflow
C-H Activation Catalysts

Our unparalleled portfolio of C–H activation catalysts, auxiliaries, and oxidants provide reliable and predictable conversions of C–H bonds to C–C, C–N, C–O or C–X bonds.

View Products
Buchwald-Hartwig cross-coupling reaction scheme for C-N or C-O bond formation
Cross-coupling Catalysts

We offer an extensive portfolio of nickel and palladium catalysts to aid in the creation of C-C, C-N, and C-O bonds through common cross-coupling reactions.

Shop Products

Grouping reactions by the functional groups it generates is another way to classify an organic reaction. Since a chemist typically works backwards from the end molecule, it is helpful to group reactions in this way. For example, if an alcohol is the desired end functional group, one could look at using a Grignard reaction with an aldehyde or a ketone, a reduction reaction of either a carboxylic acid, an aldehyde, a ketone, or an ester, or a hydration reaction of an alkene.

The third type of reaction group focuses on reactions that alter the carbon-carbon skeleton through bond creation or breaking. Tremendous advances in synthetic methods for C-C bond formation now make it possible to choose from over 100 different reactions. These advances are due to various factors, including the development of robust and reliable protocols for cross-coupling, increased accessibility to various organometallic reagents, and the creation and improvement of stoichiometric reagents which serve to place a specific carbon-containing moiety.

Document Search
Looking for More Specific Information?

Visit our document search for data sheets, certificates and technical documentation.

Find Documents

Sign In To Continue

To continue reading please sign in or create an account.

Don't Have An Account?