Direkt zum Inhalt
Merck
  • Both high-fidelity replicative and low-fidelity Y-family polymerases are involved in DNA rereplication.

Both high-fidelity replicative and low-fidelity Y-family polymerases are involved in DNA rereplication.

Molecular and cellular biology (2014-12-10)
Takayuki Sekimoto, Tsukasa Oda, Kiminori Kurashima, Fumio Hanaoka, Takayuki Yamashita
ZUSAMMENFASSUNG

DNA rereplication is a major form of aberrant replication that causes genomic instabilities, such as gene amplification. However, little is known about which DNA polymerases are involved in the process. Here, we report that low-fidelity Y-family polymerases (Y-Pols), Pol η, Pol ι, Pol κ, and REV1, significantly contribute to DNA synthesis during rereplication, while the replicative polymerases, Pol δ and Pol ε, play an important role in rereplication, as expected. When rereplication was induced by depletion of geminin, these polymerases were recruited to rereplication sites in human cell lines. This finding was supported by RNA interference (RNAi)-mediated knockdown of the polymerases, which suppressed rereplication induced by geminin depletion. Interestingly, epistatic analysis indicated that Y-Pols collaborate in a common pathway, independently of replicative polymerases. We also provide evidence for a catalytic role for Pol η and the involvement of Pol η and Pol κ in cyclin E-induced rereplication. Collectively, our findings indicate that, unlike normal S-phase replication, rereplication induced by geminin depletion and oncogene activation requires significant contributions of both Y-Pols and replicative polymerases. These findings offer important mechanistic insights into cancer genomic instability.

MATERIALIEN
Produktnummer
Marke
Produktbeschreibung

Sigma-Aldrich
Saccharose, for molecular biology, ≥99.5% (GC)
Sigma-Aldrich
Saccharose, ≥99.5% (GC)
Sigma-Aldrich
DAPI, for nucleic acid staining
Sigma-Aldrich
Natriumchlorid, for molecular biology, DNase, RNase, and protease, none detected, ≥99% (titration)
Sigma-Aldrich
Saccharose, ≥99.5% (GC), BioXtra
Sigma-Aldrich
Magnesiumchlorid -Lösung, for molecular biology, 1.00 M±0.01 M
Sigma-Aldrich
Magnesiumchlorid, anhydrous, ≥98%
Sigma-Aldrich
Saccharose, BioUltra, for molecular biology, ≥99.5% (HPLC)
Sigma-Aldrich
Natriumchlorid -Lösung, 5 M in H2O, BioReagent, for molecular biology, suitable for cell culture
Sigma-Aldrich
Propidiumjodid, ≥94.0% (HPLC)
Sigma-Aldrich
Natriumchlorid -Lösung, 0.9% in water, BioXtra, suitable for cell culture
Sigma-Aldrich
Natriumchlorid, BioReagent, suitable for cell culture, suitable for insect cell culture, suitable for plant cell culture, ≥99%
Sigma-Aldrich
Ethylenglykol-bis(2-aminoethylether)-N,N,N′,N′-Tetraessigsäure, for molecular biology, ≥97.0%
Supelco
Saccharose, Pharmaceutical Secondary Standard; Certified Reference Material
USP
Saccharose, United States Pharmacopeia (USP) Reference Standard
Sigma-Aldrich
Natriumchlorid, BioXtra, ≥99.5% (AT)
Sigma-Aldrich
PIPES, ≥99% (titration)
SAFC
Natriumchlorid -Lösung, 5 M
Sigma-Aldrich
Saccharose, ≥99.5% (GC), BioReagent, suitable for cell culture, suitable for insect cell culture
Sigma-Aldrich
Saccharose, ≥99.5% (GC)
Sigma-Aldrich
Hydroxyharnstoff, 98%, powder
Sigma-Aldrich
Magnesiumchlorid, powder, <200 μm
Sigma-Aldrich
Natriumchlorid -Lösung, BioUltra, for molecular biology, ~5 M in H2O
Sigma-Aldrich
Natriumchlorid, BioUltra, for molecular biology, ≥99.5% (AT)
Sigma-Aldrich
Natriumchlorid, 99.999% trace metals basis
Sigma-Aldrich
Saccharose, ≥99.5% (GC), Grade II, suitable for plant cell culture
Sigma-Aldrich
PIPES, BioPerformance Certified, suitable for cell culture
Sigma-Aldrich
Natriumchlorid -Lösung, 5 M
Sigma-Aldrich
Magnesiumchlorid -Lösung, BioUltra, for molecular biology, 2 M in H2O
Sigma-Aldrich
Magnesiumchlorid, BioReagent, suitable for insect cell culture, ≥97.0%