Direkt zum Inhalt
Merck
  • Outer cell surface components essential for Fe(III) oxide reduction by Geobacter metallireducens.

Outer cell surface components essential for Fe(III) oxide reduction by Geobacter metallireducens.

Applied and environmental microbiology (2012-11-28)
Jessica A Smith, Derek R Lovley, Pier-Luc Tremblay
ZUSAMMENFASSUNG

Geobacter species are important Fe(III) reducers in a diversity of soils and sediments. Mechanisms for Fe(III) oxide reduction have been studied in detail in Geobacter sulfurreducens, but a number of the most thoroughly studied outer surface components of G. sulfurreducens, particularly c-type cytochromes, are not well conserved among Geobacter species. In order to identify cellular components potentially important for Fe(III) oxide reduction in Geobacter metallireducens, gene transcript abundance was compared in cells grown on Fe(III) oxide or soluble Fe(III) citrate with whole-genome microarrays. Outer-surface cytochromes were also identified. Deletion of genes for c-type cytochromes that had higher transcript abundance during growth on Fe(III) oxides and/or were detected in the outer-surface protein fraction identified six c-type cytochrome genes, that when deleted removed the capacity for Fe(III) oxide reduction. Several of the c-type cytochromes which were essential for Fe(III) oxide reduction in G. metallireducens have homologs in G. sulfurreducens that are not important for Fe(III) oxide reduction. Other genes essential for Fe(III) oxide reduction included a gene predicted to encode an NHL (Ncl-1-HT2A-Lin-41) repeat-containing protein and a gene potentially involved in pili glycosylation. Genes associated with flagellum-based motility, chemotaxis, and pili had higher transcript abundance during growth on Fe(III) oxide, consistent with the previously proposed importance of these components in Fe(III) oxide reduction. These results demonstrate that there are similarities in extracellular electron transfer between G. metallireducens and G. sulfurreducens but the outer-surface c-type cytochromes involved in Fe(III) oxide reduction are different.

MATERIALIEN
Produktnummer
Marke
Produktbeschreibung

Sigma-Aldrich
Eisencitrat, BioReagent, suitable for cell culture
Sigma-Aldrich
Eisencitrat, technical grade
Supelco
Eisen(III)-citrat tribasisch Monohydrat, 18-20% Fe basis (T)