Direkt zum Inhalt
Merck
  • Oxysterols exert proinflammatory effects in placental trophoblasts via TLR4-dependent, cholesterol-sensitive activation of NF-κB.

Oxysterols exert proinflammatory effects in placental trophoblasts via TLR4-dependent, cholesterol-sensitive activation of NF-κB.

Molecular human reproduction (2012-01-13)
Irving L M H Aye, Brendan J Waddell, Peter J Mark, Jeffrey A Keelan
ZUSAMMENFASSUNG

Oxidized cholesterol metabolites (oxysterols) promote inflammation in a variety of cell types and are thought to be involved in a number of disease pathologies. Oxysterol concentrations are increased in pregnancy, together with systemic oxidative stress and inflammation. We tested the hypothesis that oxysterols 25-hydroxycholesterol (25-OHC) and 7-ketocholesterol (7-ketoC) promote placental trophoblast inflammation, and determined the mechanisms involved. Treatment of primary trophoblasts in culture with 25-OHC and 7-ketoC increased the production of proinflammatory cytokines (interleukin-6, macrophage inflammatory protein-1β and tumour necrosis factor-α) in a concentration-dependent fashion. Inhibition of TLR4 activation using selective inhibitors of TLR4 complex formation (OxPAPC) or signalling transmission (CLI095) prevented lipopolysaccharide (LPS)- and oxysterol-induced inflammatory cytokine production. Pretreatment of trophoblasts with selective inhibitors of I-kB kinase activity (parthenolide and TPCA-1) reduced oxysterol- and LPS-stimulated inflammatory responses, consistent with the involvement of the nuclear factor kappa B (NF-κB) pathway downstream of TLR4 signalling. Both oxysterols also increased the phosphorylation and nuclear localization of NF-κB subunit p65/RelA. Oxysterols are also known to activate liver X receptors (LXRs) which can inhibit inflammatory signalling, either directly or indirectly via membrane cholesterol reduction. Treatment with the LXR agonist, T0901317, exerted significant anti-inflammatory effects, reducing LPS- and oxysterol-driven cytokine production. Treatment with methyl-β-cyclodextrin to deplete membrane microdomain cholesterol and thereby disrupt TLR4 signalling, similarly abrogated their effects. Together, these findings indicate that although oxysterols likely activate both pro- and anti-inflammatory pathways in the placenta, the predominant effect is the promotion of placental inflammation via TLR4-dependent activation of NF-κB.

MATERIALIEN
Produktnummer
Marke
Produktbeschreibung

Sigma-Aldrich
25-Hydroxycholesterin, ≥98%
Sigma-Aldrich
5-Cholesten-3β-ol-7-on, ≥90%