Direkt zum Inhalt
Merck
  • An Improved Method for Differentiating Mouse Embryonic Stem Cells into Cerebellar Purkinje Neurons.

An Improved Method for Differentiating Mouse Embryonic Stem Cells into Cerebellar Purkinje Neurons.

Cerebellum (London, England) (2019-02-08)
Christopher J Alexander, John A Hammer
ZUSAMMENFASSUNG

While mixed primary cerebellar cultures prepared from embryonic tissue have proven valuable for dissecting structure-function relationships in cerebellar Purkinje neurons (PNs), this technique is technically challenging and often yields few cells. Recently, mouse embryonic stem cells (mESCs) have been successfully differentiated into PNs, although the published methods are very challenging as well. The focus of this study was to simplify the differentiation of mESCs into PNs. Using a recently described neural differentiation media, we generate monolayers of neural progenitor cells from mESCs and differentiate them into PN precursors using specific extrinsic factors. These PN precursors are then differentiated into mature PNs by co-culturing them with granule neuron (GN) precursors also derived from neural progenitors using different extrinsic factors. The morphology of mESC-derived PNs is indistinguishable from PNs grown in primary culture in terms of gross morphology, spine length, and spine density. Furthermore, mESC-derived PNs express Calbindin D28K, IP3R1, IRBIT, PLCβ4, PSD93, and myosin IIB-B2, all of which are either PN-specific or highly expressed in PNs. Moreover, we show that mESC-derived PNs form synapses with GN-like cells as in primary culture, express proteins driven by the PN-specific promoter Pcp2/L7, and exhibit the defect in spine ER inheritance seen in PNs isolated from dilute-lethal (myosin Va-null) mice when expressing a Pcp2/L7-driven miRNA directed against myosin Va. Finally, we define a novel extracellular matrix formulation that reproducibly yields monolayer cultures conducive for high-resolution imaging. Our improved method for differentiating mESCs into PNs should facilitate the dissection of molecular mechanisms and disease phenotypes in PNs.

MATERIALIEN
Produktnummer
Marke
Produktbeschreibung

Sigma-Aldrich
Accutase® -Lösung, sterile-filtered, suitable for cell culture
Sigma-Aldrich
Gelatine aus Schweinehaut, gel strength 300, Type A
Sigma-Aldrich
apo-Transferrin human, powder, BioReagent, suitable for cell culture, ≥98% (agarose gel electrophoresis)
Sigma-Aldrich
Cytosin β-D-Arabinofuranosid -hydrochlorid, crystalline
Sigma-Aldrich
Albumin aus Rinderserum, lyophilized powder, γ-irradiated, Globulin Free, BioXtra, suitable for cell culture
Sigma-Aldrich
Anti-PSD93 Antibody, clone N18/30, clone N18/30, from mouse