Skip to Content
MilliporeSigma
  • Apolipoprotein A-1 regulates osteoblast and lipoblast precursor cells in mice.

Apolipoprotein A-1 regulates osteoblast and lipoblast precursor cells in mice.

Laboratory investigation; a journal of technical methods and pathology (2016-04-19)
Harry C Blair, Elena Kalyvioti, Nicholaos I Papachristou, Irina L Tourkova, Spryros A Syggelos, Despina Deligianni, Malvina G Orkoula, Christos G Kontoyannis, Eleni A Karavia, Kyriakos E Kypreos, Dionysios J Papachristou
ABSTRACT

Imbalances in lipid metabolism affect bone homeostasis, altering bone mass and quality. A link between bone mass and high-density lipoprotein (HDL) has been proposed. Indeed, it has been recently shown that absence of the HDL receptor scavenger receptor class B type I (SR-B1) causes dense bone mediated by increased adrenocorticotropic hormone (ACTH). In the present study we aimed at further expanding the current knowledge as regards the fascinating bone-HDL connection studying bone turnover in apoA-1-deficient mice. Interestingly, we found that bone mass was greatly reduced in the apoA-1-deficient mice compared with their wild-type counterparts. More specifically, static and dynamic histomorphometry showed that the reduced bone mass in apoA-1(-/-) mice reflect decreased bone formation. Biochemical composition and biomechanical properties of ApoA-1(-/-) femora were significantly impaired. Mesenchymal stem cell (MSC) differentiation from the apoA-1(-/-) mice showed reduced osteoblasts, and increased adipocytes, relative to wild type, in identical differentiation conditions. This suggests a shift in MSC subtypes toward adipocyte precursors, a result that is in line with our finding of increased bone marrow adiposity in apoA-1(-/-) mouse femora. Notably, osteoclast differentiation in vitro and osteoclast surface in vivo were unaffected in the knock-out mice. In whole bone marrow, PPARγ was greatly increased, consistent with increased adipocytes and committed precursors. Further, in the apoA-1(-/-) mice marrow, CXCL12 and ANXA2 levels were significantly decreased, whereas CXCR4 were increased, consistent with reduced signaling in a pathway that supports MSC homing and osteoblast generation. In keeping, in the apoA-1(-/-) animals the osteoblast-related factors Runx2, osterix, and Col1a1 were also decreased. The apoA-1(-/-) phenotype also included augmented CEPBa levels, suggesting complex changes in growth and differentiation that deserve further investigation. We conclude that the apoA-1 deficiency generates changes in the bone cell precursor population that increase adipoblast, and decrease osteoblast production resulting in reduced bone mass and impaired bone quality in mice.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Goat Anti-Rabbit IgG Antibody, Peroxidase Conjugated, 1 mg/mL (after reconstitution), Chemicon®
Sigma-Aldrich
Anti-Actin Antibody, clone C4, ascites fluid, clone C4, Chemicon®