Skip to Content
MilliporeSigma
  • Increased neutrophil extracellular trap-mediated Staphylococcus aureus clearance through inhibition of nuclease activity by clindamycin and immunoglobulin.

Increased neutrophil extracellular trap-mediated Staphylococcus aureus clearance through inhibition of nuclease activity by clindamycin and immunoglobulin.

The Journal of infectious diseases (2014-02-15)
Katrin Schilcher, Federica Andreoni, Satoshi Uchiyama, Taiji Ogawa, Reto A Schuepbach, Annelies S Zinkernagel
ABSTRACT

The Gram-positive human pathogen Staphylococcus aureus causes a variety of human diseases such as skin infections, pneumonia, and endocarditis. The micrococcal nuclease Nuc1 is one of the major S. aureus virulence factors and allows the bacterium to avoid neutrophil extracellular trap (NET)-mediated killing. We found that addition of the protein synthesis inhibitor clindamycin to S. aureus LAC cultures decreased nuc1 transcription and subsequently blunted nuclease activity in a molecular beacon-based fluorescence assay. We also observed reduced NET degradation through Nuc1 inhibition translating into increased NET-mediated clearance. Similarly, pooled human immunoglobulin specifically inhibited nuclease activity in a concentration-dependent manner. Inhibition of nuclease activity by clindamycin and immunoglobulin enhanced S. aureus clearance and should be considered in the treatment of S. aureus infections.

MATERIALS
Product Number
Brand
Product Description

Clindamycin hydrochloride, European Pharmacopoeia (EP) Reference Standard
USP
Clindamycin hydrochloride, United States Pharmacopeia (USP) Reference Standard
Supelco
Clindamycin hydrochloride, Pharmaceutical Secondary Standard; Certified Reference Material
Sigma-Aldrich
Clindamycin hydrochloride, lincosamide antibiotic