Skip to Content
MilliporeSigma
  • In vitro toxicity towards kiwifruit pollen of the antimicrobial peptides magainins 1 and 2.

In vitro toxicity towards kiwifruit pollen of the antimicrobial peptides magainins 1 and 2.

Plant biology (Stuttgart, Germany) (2007-06-15)
A M Speranza, A R Taddei, E Ovidi
ABSTRACT

In vitro toxicity of the antimicrobial peptides (AMPs) magainin 1 and 2 to a higher plant organism, i.e., the bicellular male gametophyte of Actinidia Deliciosa (kiwifruit), is investigated. Heavy damage to the plasma membrane, the primary cellular target of the peptides, was rapidly induced: in as few as 15 min, from 70 to nearly 100 % of pollen grains were rendered unviable by 20 microM magainin 1 or 2, respectively. Therefore, kiwifruit pollen sensitivity to natural magainins seemed to be higher if compared to the sensitivity of other pollen species towards magainin 2 amide or synthetic magainin analogues. Strong dose-dependent inhibitory effects on kiwifruit pollen performance were registered: as for magainin 1, the EC (50) at 120 min varied from 14.0 (germination) to 15.8 microM (tube elongation). The inhibitory effect was much greater when administering magainin 1 to elongating tubes rather than to ungerminated pollen grains. The two peptides differentially affected kiwifruit pollen, in line with the previously documented greater activity of magainin 2 in other cell systems. Furthermore, 20 microM magainin 1-treated pollen grains took on a shrivelled shape within 30 min of incubation, an increasingly widespread effect with higher peptide concentration. At the ultrastructural level, both protoplast shrinkage and striking organelle alterations were evident, including chromatin condensation, swelling and loss of mitochondrial cristae, dilation of rough endoplasmic reticulum cisternae, and vacuolization of cytoplasm. To our knowledge, similar alterations in animal or plant cells treated with AMPs have not been described yet.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Magainin I, ≥97% (HPLC)