Skip to Content
MilliporeSigma
  • Photoabsorption of acridine yellow and proflavin bound to human serum albumin studied by means of quantum mechanics/molecular dynamics.

Photoabsorption of acridine yellow and proflavin bound to human serum albumin studied by means of quantum mechanics/molecular dynamics.

The journal of physical chemistry. B (2013-01-30)
Kęstutis Aidas, Jógvan Magnus H Olsen, Jacob Kongsted, Hans Ågren
ABSTRACT

Attempting to unravel mechanisms in optical probing of proteins, we have performed pilot calculations of two cationic chromophores-acridine yellow and proflavin-located at different binding sites within human serum albumin, including the two primary drug binding sites as well as a heme binding site. The computational scheme adopted involves classical molecular dynamics simulations of the ligands bound to the protein and subsequent linear response polarizable embedding density functional theory calculations of the excitation energies. A polarizable embedding potential consisting of point charges fitted to reproduce the electrostatic potential and isotropic atomic polarizabilities computed individually for every residue of the protein was used in the linear response calculations. Comparing the calculated aqueous solution-to-protein shifts of maximum absorption energies to available experimental data, we concluded that the cationic proflavin chromophore is likely not to bind albumin at its drug binding site 1 nor at its heme binding site. Although agreement with experimental data could only be obtained in qualitative terms, our results clearly indicate that the difference in optical response of the two probes is due to deprotonation, and not, as earlier suggested, to different binding sites. The ramifications of this finding for design of molecular probes targeting albumin or other proteins is briefly discussed.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Acridine Yellow G, Dye content 90 %