Skip to Content
MilliporeSigma
  • Structural correlates of cytoplasmic and chloroplast lipid body synthesis in Chlamydomonas reinhardtii and stimulation of lipid body production with acetate boost.

Structural correlates of cytoplasmic and chloroplast lipid body synthesis in Chlamydomonas reinhardtii and stimulation of lipid body production with acetate boost.

Eukaryotic cell (2011-11-01)
Carrie Goodson, Robyn Roth, Zi Teng Wang, Ursula Goodenough
ABSTRACT

Light microscopy and deep-etch electron microscopy were used to visualize triacylglyceride (TAG)-filled lipid bodies (LBs) of the green eukaryotic soil alga Chlamydomonas reinhardtii, a model organism for biodiesel production. Cells growing in nitrogen-replete media contain small cytoplasmic lipid bodies (α-cyto-LBs) and small chloroplast plastoglobules. When starved for N, β-cyto-LB formation is massively stimulated. β-Cyto-LBs are intimately associated with both the endoplasmic reticulum membrane and the outer membrane of the chloroplast envelope, suggesting a model for the active participation of both organelles in β-cyto-LB biosynthesis and packaging. When sta6 mutant cells, blocked in starch biosynthesis, are N starved, they produce β-cyto-LBs and also chloroplast LBs (cpst-LBs) that are at least 10 times larger than plastoglobules and eventually engorge the chloroplast stroma. Production of β-cyto-LBs and cpst-LBs under the conditions we used is dependent on exogenous 20 mM acetate. We propose that the greater TAG yields reported for N-starved sta6 cells can be attributed to the strain's ability to produce cpst-LBs, a capacity that is lost when the mutant is complemented by a STA6 transgene. Provision of a 20 mM acetate "boost" during N starvation generates sta6 cells that become so engorged with LBs-at the expense of cytoplasm and most organelles-that they float on water even when centrifuged. This property could be a desirable feature for algal harvesting during biodiesel production.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Potassium acetate solution, BioUltra, for molecular biology, 5 M in H2O
Sigma-Aldrich
Potassium acetate, 99.98% trace metals basis
Sigma-Aldrich
Potassium acetate, BioUltra, for molecular biology, ≥99.0% (NT)
Sigma-Aldrich
Potassium acetate, BioXtra, ≥99.0%
Sigma-Aldrich
Potassium acetate, SAJ first grade, ≥95.0%
Sigma-Aldrich
Potassium acetate, for molecular biology, ≥99.0%
Sigma-Aldrich
Potassium acetate, ReagentPlus®, ≥99.0%
Sigma-Aldrich
Potassium acetate, meets USP testing specifications
Sigma-Aldrich
Potassium acetate, puriss., meets analytical specification of Ph. Eur., BP, E261, 99-101%
Sigma-Aldrich
Potassium acetate, ACS reagent, ≥99.0%