Skip to Content
MilliporeSigma
  • Mechanistic studies of the radical S-adenosyl-L-methionine enzyme DesII: EPR characterization of a radical intermediate generated during its catalyzed dehydrogenation of TDP-D-quinovose.

Mechanistic studies of the radical S-adenosyl-L-methionine enzyme DesII: EPR characterization of a radical intermediate generated during its catalyzed dehydrogenation of TDP-D-quinovose.

Journal of the American Chemical Society (2011-04-26)
Mark W Ruszczycky, Sei-hyun Choi, Steven O Mansoorabadi, Hung-wen Liu
ABSTRACT

DesII, a radical S-adenosyl-l-methionine (SAM) enzyme from Streptomyces venezuelae, catalyzes the deamination of TDP-4-amino-4,6-dideoxy-D-glucose to TDP-3-keto-4,6-dideoxy-D-glucose in the desosamine biosynthetic pathway. DesII can also catalyze the dehydrogenation of TDP-D-quinovose to the corresponding 3-keto sugar. Similar to other radical SAM enzymes, DesII catalysis has been proposed to proceed via a radical mechanism. This hypothesis is now confirmed by EPR spectroscopy with the detection of a TDP-D-quinovose radical intermediate having a g-value of 2.0025 with hyperfine coupling to two spin 1/2 nuclei, each with a splitting constant of 33.6 G. A significant decrease in the EPR line width is observed when the radical is generated in reactions conducted in D(2)O versus H(2)O. These results are consistent with a C3 α-hydroxyalkyl radical in which the p-orbital harboring the unpaired electron spin at C3 is periplanar with the C-H bonds at both C2 and C4.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
6-Deoxy-D-glucose