Skip to Content
MilliporeSigma
  • An isoleucine-leucine substitution in chloroplastic acetyl-CoA carboxylase from green foxtail (Setaria viridis L. Beauv.) is responsible for resistance to the cyclohexanedione herbicide sethoxydim.

An isoleucine-leucine substitution in chloroplastic acetyl-CoA carboxylase from green foxtail (Setaria viridis L. Beauv.) is responsible for resistance to the cyclohexanedione herbicide sethoxydim.

Planta (2002-02-22)
Christophe Délye, Tianyu Wang, Henri Darmency
ABSTRACT

The cDNAs encoding chloroplastic acetyl-CoA carboxylase (ACCase, EC 6.4.1.2) from three lines of Setaria viridis (L. Beauv.) resistant or sensitive to sethoxydim, and from one sethoxydim-sensitive line of Setaria italica (L. Beauv.) were cloned and sequenced. Sequence comparison revealed that a single isoleucine-leucine substitution discriminated ACCases from sensitive and resistant lines. Using near-isogenic lines of S. italica derived from interspecific hybridisation, we demonstrated that the transfer of the S. viridis mutant ACCase allele into a sethoxydim-sensitive S. italica line conferred resistance to this herbicide. We confirmed this result using allele-specific polymerase chain reaction and showed that a single copy of the mutant allele is sufficient to confer resistance to sethoxydim. We conclude that a mutant allele of chloroplastic ACCase encoding a leucine residue instead of an isoleucine residue at position 1780 is a major gene of resistance to sethoxydim.

MATERIALS
Product Number
Brand
Product Description

Supelco
Sethoxydim, PESTANAL®, analytical standard