Skip to Content
MilliporeSigma
All Photos(2)

Key Documents

S2076

Sigma-Aldrich

α-2,6-Sialyltransferase from Photobacterium damsela

recombinant, expressed in E. coli BL21, ≥5 units/mg protein

Synonym(s):

β-Galactoside α-2,6-sialyltransferase, CMP-N-Acetylneuraminate:β-D-galactosyl-1,4-N-acetyl-β-D-glucosamine α-2,6-N-acetylneuraminyltransferase

Sign Into View Organizational & Contract Pricing


About This Item

Enzyme Commission number:
MDL number:
UNSPSC Code:
12352204
NACRES:
NA.54

recombinant

expressed in E. coli BL21

Quality Level

form

lyophilized powder

specific activity

≥5 units/mg protein

mol wt

56.8 kDa

shipped in

dry ice

storage temp.

−20°C

General description

Human ST6Gal-I (β-galactoside α-2,6-sialyltransferase 1) is a member of the CAZy family GT29.

Application

α-2,6-Sialyltransferase from Photobacterium damsela has been used in resialylation and restoration of sialic acids (SAs) in HRT-18G cells.
Highly active α2-6 sialyltransferase has been used to prepare high levels of disialylated fragment crystals.

Biochem/physiol Actions

The terminal step of complex N-glycan biosynthesis is catalysed by α-2,6-sialyltransferase (STs). Bacterial α(2,6)-STs possesses broader acceptor substrate specificity when compared to eukaryotic α(2,6)-STs.
Sialyltransferase transfers Neu5Ac from CMP-Neu5Ac to the galactosyl terminus of acceptor molecules including glycoproteins, glycolipids, and oligosaccharides.

Unit Definition

One unit will catalyze the formation of 1 μmol Neu-5-Ac-α-2,6-LacMU from CMP-Neu-5-Ac and Lac-β−OMU per minute at 37 °C at pH 8.0.

Physical form

Supplied as a lyophilized powder containing Tris-HCl and NaCl.

Analysis Note

Enzymatic activity assays are performed in Tris-HCl buffer (100 mM, pH 8.0) containing CMP-Neu-5-Ac (1 mM) and Lac-β−OMU (1 mM) at 37 °C for 30 min and analyzed using HPLC with a fluorescence detector (excitation at 325 nm and emission at 372 nm).

Storage Class Code

11 - Combustible Solids

WGK

WGK 3

Flash Point(F)

Not applicable

Flash Point(C)

Not applicable


Certificates of Analysis (COA)

Search for Certificates of Analysis (COA) by entering the products Lot/Batch Number. Lot and Batch Numbers can be found on a product’s label following the words ‘Lot’ or ‘Batch’.

Already Own This Product?

Find documentation for the products that you have recently purchased in the Document Library.

Visit the Document Library

Chompunuch Boonarkart et al.
Journal of medical virology, 84(3), 380-385 (2012-01-17)
A case of unusually high severity of influenza pneumonia leading to acute respiratory distress syndrome and death was investigated. This was a previously a healthy 28-year-old man with no underlying conditions, admitted to a hospital during the first wave of
Masayoshi Onitsuka et al.
Applied microbiology and biotechnology, 94(1), 69-80 (2011-12-30)
Improvement of glycosylation is one of the most important topics in the industrial production of therapeutic antibodies. We have focused on terminal sialylation with alpha-2,6 linkage, which is crucial for anti-inflammatory activity. In the present study, we have successfully cloned
N Li et al.
Acta virologica, 55(2), 147-153 (2011-06-23)
Human influenza viruses are major concern as the leading cause of global pandemics. In infecting cells, they preferentially bind to sialyloligosaccharides containing terminal N-acetyl sialic acid linked to galactose by an α-2,6-linkage (NeuAcα2,6Gal). The amount of NeuAcα2,6Gal in Vero cells
Enhanced Bacterial alpha (2, 6)-Sialyltransferase Reaction through an Inhibition of Its Inherent Sialidase Activity by Dephosphorylation of Cytidine-5'-Monophosphate
Kang JY, et al.
PLoS ONE, 10(7), e0133739-e0133739 (2015)
Nageswari Yarravarapu et al.
Bioconjugate chemistry, 33(5), 781-787 (2022-04-20)
Glycan binding often mediates extracellular macromolecular recognition events. Accurate characterization of these binding interactions can be difficult because of dissociation and scrambling that occur during purification and analysis steps. Use of photocrosslinking methods has been pursued to covalently capture glycan-dependent

Articles

Explore tools for glycosyltransferase synthesis and modification of glycans, such as glycosyltransferases and nucleotide sugar donors.

Explore tools for glycosyltransferase synthesis and modification of glycans, such as glycosyltransferases and nucleotide sugar donors.

Explore tools for glycosyltransferase synthesis and modification of glycans, such as glycosyltransferases and nucleotide sugar donors.

Explore tools for glycosyltransferase synthesis and modification of glycans, such as glycosyltransferases and nucleotide sugar donors.

See All

Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.

Contact Technical Service