Skip to Content
MilliporeSigma
All Photos(3)

Key Documents

372846

Sigma-Aldrich

Poly(2-ethyl-2-oxazoline) 5-7 cSt

Synonym(s):

Poly(2-ethyl-2-oxazoline), PEOX, POx, PetOx, poly 2-ethyloxazoline, polyethyloxazoline

Sign Into View Organizational & Contract Pricing


About This Item

Linear Formula:
[-N(COC2H5)CH2CH2-]n
CAS Number:
MDL number:
UNSPSC Code:
12162002
PubChem Substance ID:
NACRES:
NA.23

form

solid

mol wt

average Mw ~50,000

refractive index

n20/D 1.52

viscosity

5-7 cSt, 10 % in water(100 °F)

transition temp

softening point 110-120 °C (Vicat, ASTM D 1525-82)
Tg 69-71 °C

density

1.14 g/mL at 25 °C (lit.)

PDI

3‑4

InChI

1S/C5H9NO/c1-2-5-6-3-4-7-5/h2-4H2,1H3

InChI key

NYEZZYQZRQDLEH-UHFFFAOYSA-N

Looking for similar products? Visit Product Comparison Guide

Application

This Poly(2-ethyl-2-oxazoline) polymer is amorphous and water soluble with good temperature stability. Jordan and coworkers showed biocompatibility, no accumulation in tissue, and rapid clearance from the bloodstream. End-group modified poly(2-ethyl-2-oxazoline)s have been conjugated to peptides, and were shown as versatile alternatives to poly(ethylene glycol) (PEG) for both protein and small drug conjugation.

Potential substitute for poly(vinyl alcohol) and poly(vinyl pyrrolidone). Adhesion promoter in coatings. Heat sealing and remoistenable hot-melt adhesive

Features and Benefits

Nonionic, water-soluble thermoplastic. Better heat stability than poly(vinyl alcohol). Good melt flow, shear stability and Newtonian characteristics. Water is a room temperature Theta solvent.

Physical form

N-propionyl substituted linear polyethylenimine

Storage Class Code

11 - Combustible Solids

WGK

WGK 3

Flash Point(F)

Not applicable

Flash Point(C)

Not applicable

Personal Protective Equipment

dust mask type N95 (US), Eyeshields, Gloves

Certificates of Analysis (COA)

Search for Certificates of Analysis (COA) by entering the products Lot/Batch Number. Lot and Batch Numbers can be found on a product’s label following the words ‘Lot’ or ‘Batch’.

Already Own This Product?

Find documentation for the products that you have recently purchased in the Document Library.

Visit the Document Library

J H Jeong et al.
Journal of controlled release : official journal of the Controlled Release Society, 73(2-3), 391-399 (2001-08-23)
A series of linear poly(ethylenimine) (L-PEI) containing varying amounts of cationic charge density in its backbone was produced by controlled hydrolysis of poly(2-ethyl-2-oxazoline) (PEtOz) for using as a nonviral DNA transfection agent. The effects of cationic charge density and molecular
Issa Katime et al.
Applied spectroscopy, 57(7), 829-834 (2003-12-09)
This paper reports an FT-IR study of blends of poly(mono-n-alkyl itaconates) with poly(N,N-dimethylacrylamide) (PDMA) and poly(ethyloxazoline) (PEOX). Strong hydrogen bonding has been found, and both polybases have shown similar acceptor strengths. Derivative techniques show asymmetric profiles for the free carbonyl
Yung-Chu Chen et al.
Journal of biomedical materials research. Part A, 100(5), 1279-1292 (2012-03-01)
The multifunctional nanoparticles constructed from triphenylamine-poly(lactide-co-glycolide)-poly(ethyleneglycol)-poly(lactide-co-glycolide) (TPA-PEP) and folate-poly(2-ethyl-2oxazoline)-poly(D,L-lactide) (folate-PEOz-PLA) were developed in this study. Iron oxide nanoparticles (IOP) and paclitaxel (PTX) were coencapsulated in the nanoparticles with diameter less than 200 nm. The drug-loaded nanoparticles emit fluorescence peak at
Sang Cheon Lee et al.
Journal of controlled release : official journal of the Controlled Release Society, 89(3), 437-446 (2003-05-10)
Polymeric micelles based on amphiphilic block copolymers of poly(2-ethyl-2-oxazoline) (PEtOz) and poly(epsilon -caprolactone) (PCL) were prepared in an aqueous phase. The loading of paclitaxel into PEtOz-PCL micelles was confirmed by 1H-NMR spectra. Paclitaxel was efficiently loaded into PEtOz-PCL micelles using
S R Winn et al.
Orthodontics & craniofacial research, 8(3), 183-190 (2005-07-19)
Bone repair strategies continue to be developed for alternatives to autografting, allogeneic implants of banked bone, and other bone substitutes. Efforts have included the delivery of potent growth and/or differentiation factors and the use of gene therapy. For bone regeneration

Articles

The introduction of polymers into the biomedical field has opened new avenues in tissue engineering, implant design, biosensing, and drug delivery.

We present an article that discusses two applications in particular; first, using these layers as polyelectrolyte membranes to control permeability.

Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.

Contact Technical Service