Saltar al contenido
Merck
HomeOrganic Reaction ToolboxRecent Advances in the Catalytic Transformations

Recent Advances in the Catalytic Transformations to Access Alkylsulfonyl Fluorides as SuFEx Click Hubs

Byeong Jun Koo, Sun Bu Lee, Woo Hee Kim, Muhammad Israr, and Han Yong Bae*

Department of Chemistry, Sungkyunkwan University 2066, Seobu-ro, Jangan-gu, Suwon,16419, Republic of Korea

Abstract

The search for new and efficient methods to access sulfonyl fluorides is of considerable research interest owing to the widespread application of these molecules in different fields. In this context, sulfur(VI) fluoride exchange (SuFEx) click chemistry is emerging as one of the most prominent such methods. The development of competent new catalytic methodologies for preparing alkylsulfonyl fluorides has become an area of special interest in organic synthesis. Compared with the substantial progress already made in the synthesis of arylsulfonyl fluorides, approaches for preparing aliphatic sulfonyl fluorides remain less explored. In this review, we summarize recent advances in four different strategies for synthesizing alkylsulfonyl fluorides: (i) photoredox catalysis, (ii) electrocatalysis, (iii) transition-metal catalysis, and (iv) organocatalysis. These reactions result in different sulfonyl fluorides that can act as bioactive molecules and building blocks suitable for further SuFEx transformation.

Introduction

Sulfonyl fluorides are important building blocks in chemical synthesis and have a diverse range of applications in materials science, chemical biology, and drug discovery.1–3 Beginning in 2014, Sharpless and co-workers demonstrated that the sulfur(VI) fluoride exchange (SuFEx) reaction is an emerging new click reaction possessing the inimitable reactivity and stability of organosulfur fluorides.4–6 The first-generation click reaction, the Huisgen azide–alkyne cycloaddition, has become a useful tool owing to the ligation ability of the azide and alkyne and to the utilization of mild copper catalysis.7–10 Click reactions can work under aqueous and oxygen-tolerant conditions, resulting in excellent yields of products. Sulfonyl fluoride is more robust under acidic and basic conditions than the well-known sulfonyl chloride.11

Sulfur(VI)-containing compounds have been widely used in pharmaceuticals,12–15 materials science,16 and polymer science.17 Interesting applications of sulfonyl fluorides in biochemistry have included the inhibition of proteases and as biological probes (Figure 1, Part (a)).18–20 The SuFEx reaction between di(arylsulfonyl fluorides) and di(aryl silyl ethers) that affords polysulfonate–SuFEx polymers has unique applications in polymer science21–24 because of its efficiency. To synthesize the functional molecules of interest, multistep processes are required in conventional approaches (Figure 1, Part (b)). Moreover, well-designed and readily available precursors are needed to apply the catalytic processes. For example, ethenesulfonyl fluoride (ESF, H2C=CHSO2F) has been introduced as a good Michael acceptor for the preparation of various nitrogen-, oxygen-, and carbon-based nucleophiles that can be utilized in the synthesis of functionalized alkylsulfonyl fluorides (Figure 1, Part (c)).25–27

In this review, we highlight new methodologies; including photoredox catalysis, electrocatalysis, transition-metal catalysis, and organocatalysis; that have been developed for the synthesis of alkylsulfonyl fluorides (Figure 1, Part (d)).

Chemical Structures of Six Representative Biologically Active Alkylsulfonyl Fluorides, Conventional Methods Used for the Synthesis of Alkylsulfonyl Fluorides, Sharpless’s Kilogram- Scale Synthesis of ESF, and Catalytic Synthetic Methods

Figure 1. (a) Chemical Structures of Representative Biologically Active Alkylsulfonyl Fluorides.
(b) Conventional Methods Used for the Synthesis of Alkylsulfonyl Fluorides. (c) Sharpless’s Kilogram- Scale Synthesis of ESF. (d) Catalytic Synthetic Methods Highlighted in This Review.

Conclusions and Outlook

We have surveyed the synthesis of alkylsulfonyl fluorides via carbon–carbon or carbon–heteroatom bond formation and their fluoride exchange (SuFEx) reaction with suitable coupling partners. Reactions of the SO2F functional group provide access to a wide variety of carbo- and heterocycles upon activation through photoredox catalysis, electrocatalysis, transition-metal catalysis, and organocatalysis. We believe that these methods will contribute to the expansion of sulfonyl fluoride containing compound libraries for pharmaceutical and agrochemical research.

Acknowledgment

The generous support of the Ministry of Science, ICT, and Future Planning of Korea (RS-2023-00259659, RS-2023-00219859, 2020R1C1C1006440, and 2019R1A6A1A10073079) is gratefully acknowledged.

Trademarks. DABCO® (Evonik Operations GmbH); Selectfluor® (Merck KGaA, Darmstadt, Germany).

Related Products
Loading

References

1.
Lange W, Müller E. 1930. Über Aryl‐fluorsulfonate, Ar. O. So 2 F. Ber. dtsch. Chem. Ges. A/B. 63(9):2653-2657. https://doi.org/10.1002/cber.19300630946
2.
Steinkopf W. 1927. Über Aromatische Sulfofluoride. J. Prakt. Chem. 117(1):1-82. https://doi.org/10.1002/prac.19271170101
3.
Steinkopf W, Jaeger P. 1930. Über Aromatische Sulfofluoride. II. Mitteilung. J. Prakt. Chem. 128(1):63-88. https://doi.org/10.1002/prac.19301280104
4.
Dong J, Krasnova L, Finn MG, Sharpless KB. 2014. Sulfur(VI) Fluoride Exchange (SuFEx): Another Good Reaction for Click Chemistry. Angew. Chem., Int. Ed. 53(36):9430-9448. https://doi.org/10.1002/anie.201309399
5.
Li S, Wu P, Moses JE, Sharpless KB. 2017. Multidimensional SuFEx Click Chemistry: Sequential Sulfur(VI) Fluoride Exchange Connections of Diverse Modules Launched From An SOF4 Hub. Angew. Chem., Int. Ed. 56(11):2903-2908. https://doi.org/10.1002/anie.201611048
6.
Gao B, Li S, Wu P, Moses JE, Sharpless KB. 2018. SuFEx Chemistry of Thionyl Tetrafluoride (SOF4) with Organolithium Nucleophiles: Synthesis of Sulfonimidoyl Fluorides, Sulfoximines, Sulfonimidamides, and Sulfonimidates. Angew. Chem., Int. Ed. 57(7):1939-1943. https://doi.org/10.1002/anie.201712145
7.
Huisgen R. 1963. 1,3-Dipolar Cycloadditions. Past and Future. Angew. Chem., Int. Ed. 2(10):565-598. https://doi.org/10.1002/anie.196305651
8.
Kolb HC, Finn MG, Sharpless KB. 2001. Click Chemistry: Diverse Chemical Function from a Few Good Reactions. Angew. Chem., Int. Ed. 40(11):2004-2021. https://doi.org/10.1002/1521-3773(20010601)40:11<2004::AID-ANIE2004>3.0.CO;2-5
9.
Tornøe CW, Christensen C, Meldal M. 2002. Peptidotriazoles on Solid Phase:  [1,2,3]-Triazoles by Regiospecific Copper(I)-Catalyzed 1,3-Dipolar Cycloadditions of Terminal Alkynes to Azides. J. Org. Chem. 67(9):3057-3064. https://doi.org/10.1021/jo011148j
10.
Rostovtsev VV, Green LG, Fokin VV, Sharpless KB. 2002. A Stepwise Huisgen Cycloaddition Process: Copper(I)-Catalyzed Regioselective “Ligation” of Azides and Terminal Alkynes. Angew. Chem., Int. Ed. 41(14):2596-2599. https://onlinelibrary.wiley.com/doi/10.1002/1521-3773(20020715)41:14%3C2596::AID-ANIE2596%3E3.0.CO;2-4
11.
Suter CM. 1944. The Organic Chemistry of Sulfur: Tetracovalent Sulfur Compounds. Wiley: New York, NY. 453–572.
12.
Majumdar KC, Mondal S. 2011. Recent Developments in the Synthesis of Fused Sultams. Chem. Rev. 111(12):7749-7773. https://doi.org/10.1021/cr1003776
13.
Zhao C, Rakesh K, Ravidar L, Fang W, Qin H. 2019. Pharmaceutical and medicinal significance of sulfur (SVI)-Containing motifs for drug discovery: A critical review. Eur. J. Med. Chem. 162679-734. https://doi.org/10.1016/j.ejmech.2018.11.017
14.
Meanwell NA. 2011. Synopsis of Some Recent Tactical Application of Bioisosteres in Drug Design. J. Med. Chem. 54(8):2529-2591. https://doi.org/10.1021/jm1013693
15.
Scott KA, Njardarson JT. 2018. Analysis of US FDA-Approved Drugs Containing Sulfur Atoms. Top. Curr. Chem. (Z). 376(1): https://doi.org/10.1007/s41061-018-0184-5
16.
(a) Hou J, Lu L, Wang L, Ohma A, Ren D, Feng X, Li Y, Li Y, Ootani I, Han X, Ren W, He X, Nitta Y, Ouyang M. 2020. Thermal runaway of Lithium-ion batteries employing LiN(SO2F)2-based concentrated electrolytes. Nat. Commun. 11(1):5100. https://doi.org/10.1038/s41467-020-18868-w (b) Ugata Y, Chen Y, Sasagawa S, Ueno K, Watanabe M, Mita H, Shimura J, Nagamine M, Dokko K. 2022. Eutectic Electrolytes Composed of LiN(SO2F)2 and Sulfones for Li-Ion Batteries. J. Phys. Chem. C. 126(24):10024-10034. https://doi.org/10.1021/acs.jpcc.2c02922
17.
Dong J, Sharpless KB, Kwisnek L, Oakdale JS, Fokin VV. 2014. SuFEx-Based Synthesis of Polysulfates. Angew. Chem., Int. Ed. 53(36):9466-9470. https://doi.org/10.1002/anie.201403758
18.
Alapafuja SO, Nikas SP, Bharathan IT, Shukla VG, Nasr ML, Bowman AL, Zvonok N, Li J, Shi X, Engen JR, et al. 2012. Sulfonyl Fluoride Inhibitors of Fatty Acid Amide Hydrolase. J. Med. Chem. 55(22):10074-10089. https://doi.org/10.1021/jm301205j
19.
Shishido Y, Tomoike F, Kimura Y, Kuwata K, Yano T, Fukui K, Fujikawa H, Sekido Y, Murakami-Tonami Y, Kameda T, et al. 2017. A covalent G-site inhibitor for glutathione S-transferase Pi (GSTP1-1). Chem. Commun. 53(81):11138-11141. https://doi.org/10.1039/c7cc05829b
20.
Aguilar B, Amissah F, Duverna R, S. Lamango N. 2011. Polyisoprenylation Potentiates the Inhibition of Polyisoprenylated Methylated Protein Methyl Esterase and the Cell Degenerative Effects of Sulfonyl Fluorides. CCDT. 11(6):752-762. https://doi.org/10.2174/156800911796191015
21.
Gao B, Zhang L, Zheng Q, Zhou F, Klivansky LM, Lu J, Liu Y, Dong J, Wu P, Sharpless KB. 2017. Bifluoride-catalysed sulfur(VI) fluoride exchange reaction for the synthesis of polysulfates and polysulfonates. Nat. Chem. 9(11):1083-1088. https://doi.org/10.1038/nchem.2796
22.
Wang M, Jin H, Chen X, Lin B, Yang H. 2019. A sulfur(vi) fluoride exchange click chemistry approach towards main chain liquid crystal polymers bearing sulfate ester groups. Polym. Chem. 10(26):3657-3664. https://doi.org/10.1039/c9py00577c
23.
Li S, Li G, Gao B, Pujari SP, Chen X, Kim H, Zhou F, Klivansky LM, Liu Y, Driss H, et al. 2021. SuFExable polymers with helical structures derived from thionyl tetrafluoride. Nat. Chem. 13(9):858-867. https://doi.org/10.1038/s41557-021-00726-x
24.
Kim H, Zhao J, Bae J, Klivansky LM, Dailing EA, Liu Y, Cappiello JR, Sharpless KB, Wu P. 2021. Chain-Growth Sulfur(VI) Fluoride Exchange Polycondensation: Molecular Weight Control and Synthesis of Degradable Polysulfates. ACS Cent. Sci. 7(11):1919-1928. https://doi.org/10.1021/acscentsci.1c01015
25.
Chen Q, Mayer P, Mayr H. 2016. Ethenesulfonyl Fluoride: The Most Perfect Michael Acceptor Ever Found?. Angew. Chem., Int. Ed. 55(41):12664-12667. https://doi.org/10.1002/anie.201601875
26.
Meng Y, Wang S, Fang W, Xie Z, Leng J, Alsulami H, Qin H. 2020. Ethenesulfonyl Fluoride (ESF) and Its Derivatives in SuFEx Click Chemistry and More. Synthesis. 52(05):673-687. https://doi.org/10.1055/s-0039-1690038
27.
Zheng Q, Dong J, Sharpless KB. 2016. Ethenesulfonyl Fluoride (ESF): An On-Water Procedure for the Kilogram-Scale Preparation. J. Org. Chem. 81(22):11360-11362. https://doi.org/10.1021/acs.joc.6b01423
28.
Xu R, Xu T, Yang M, Cao T, Liao S. 2019. A rapid access to aliphatic sulfonyl fluorides. Nat. Commun. 10(1): https://doi.org/10.1038/s41467-019-11805-6
29.
Zhang X, Fang W, Lekkala R, Tang W, Qin H. 2020. An Easy, General and Practical Method for the Construction of Alkyl Sulfonyl Fluorides. Adv. Synth. Catal. 362(16):3358-3363. https://doi.org/10.1002/adsc.202000515
30.
Zhang X, Qin H. 2022. A General Procedure for the Construction of 2-Alkyl-Substituted Vinyl Sulfonyl Fluoride. Org. Lett. 24(50):9311-9315. https://doi.org/10.1021/acs.orglett.2c03936
31.
Zhong T, Yi J, Chen Z, Zhuang Q, Li Y, Lu G, Weng J. 2021. Photoredox-catalyzed aminofluorosulfonylation of unactivated olefins. Chem. Sci. 12(27):9359-9365. https://doi.org/10.1039/d1sc02503a
32.
Chen Z, Zhou X, Yi J, Diao H, Chen Q, Lu G, Weng J. 2022. Catalytic Decarboxylative Fluorosulfonylation Enabled by Energy-Transfer-Mediated Photocatalysis. Org. Lett. 24(13):2474-2478. https://doi.org/10.1021/acs.orglett.2c00459
33.
Zhang H, Li S, Zheng H, Zhu G, Liao S, Nie X. 2022. Photocatalytic fluorosulfonylation of aliphatic carboxylic acid NHPI esters. Org. Chem. Front. 9(18):4854-4860. https://doi.org/10.1039/d2qo00861k
34.
Wang P, Zhang H, Zhao M, Ji S, Lin L, Yang N, Nie X, Song J, Liao S. 2022. Radical Hydro‐Fluorosulfonylation of Unactivated Alkenes and Alkynes. Angew. Chem., Int. Ed. 61(39): https://doi.org/10.1002/anie.202207684
35.
Wu X, Chu L, Qing F. 2013. Silver-Catalyzed Hydrotrifluoromethylation of Unactivated Alkenes with CF3SiMe3. Angew. Chem., Int. Ed. 52(8):2198-2202. https://doi.org/10.1002/anie.201208971
36.
Nie X, Xu T, Song J, Devaraj A, Zhang B, Chen Y, Liao S. 2021. Radical Fluorosulfonylation: Accessing Alkenyl Sulfonyl Fluorides from Alkenes. Angew. Chem., Int, Ed. 60(8):3956-3960. https://doi.org/10.1002/anie.202012229
37.
(a) Wang P, Zhang H, Nie X, Xu T, Liao S. 2022. Photoredox catalytic radical fluorosulfonylation of olefins enabled by a bench-stable redox-active fluorosulfonyl radical precursor. Nat. Commun. 13(1):3370. https://doi.org/10.1038/s41467-022-31089-7 (b) Zhang W, Li H, Li X, Zou Z, Huang M, Liu J, Wang X, Ni S, Pan Y, Wang Y. 2022. A practical fluorosulfonylating platform via photocatalytic imidazolium-based SO2F radical reagent. Nat. Commun. 13(1):3515. https://doi.org/10.1038/s41467-022-31296-2
38.
Erchinger JE, Hoogesteger R, Laskar R, Dutta S, Hümpel C, Rana D, Daniliuc CG, Glorius F. 2023. EnT-Mediated N–S Bond Homolysis of a Bifunctional Reagent Leading to Aliphatic Sulfonyl Fluorides. J. Am. Chem. Soc. 145(4):2364-2374. https://doi.org/10.1021/jacs.2c11295
39.
Francke R, Little RD. 2014. Redox catalysis in organic electrosynthesis: basic principles and recent developments. Chem. Soc. Rev. 43(8):2492. https://doi.org/10.1039/c3cs60464k
40.
Meyer TH, Choi I, Tian C, Ackermann L. 2020. Powering the Future: How Can Electrochemistry Make a Difference in Organic Synthesis?. Chem. 6(10):2484-2496. https://doi.org/10.1016/j.chempr.2020.08.025
41.
Liu J, Lu L, Wood D, Lin S. 2020. New Redox Strategies in Organic Synthesis by Means of Electrochemistry and Photochemistry. ACS Cent. Sci. 6(8):1317-1340. https://doi.org/10.1021/acscentsci.0c00549
42.
Laudadio G, Bartolomeu AdA, Verwijlen LMHM, Cao Y, de Oliveira KT, Noël T. 2019. Sulfonyl Fluoride Synthesis through Electrochemical Oxidative Coupling of Thiols and Potassium Fluoride. J. Am. Chem. Soc. 141(30):11832-11836. https://doi.org/10.1021/jacs.9b06126
43.
Pupo G, Vicini AC, Ascough DMH, Ibba F, Christensen KE, Thompson AL, Brown JM, Paton RS, Gouverneur V. 2019. Hydrogen Bonding Phase-Transfer Catalysis with Potassium Fluoride: Enantioselective Synthesis of β-Fluoroamines. J. Am. Chem. Soc. 141(7):2878-2883. https://doi.org/10.1021/jacs.8b12568
44.
Chen D, Nie X, Feng Q, Zhang Y, Wang Y, Wang Q, Huang L, Huang S, Liao S. 2021. Electrochemical Oxo‐Fluorosulfonylation of Alkynes under Air: Facile Access to β‐Keto Sulfonyl Fluorides. Angew. Chem., Int. Ed. 60(52):27271-27276. https://doi.org/10.1002/anie.202112118
45.
Feng Q, Fu Y, Zheng Y, Liao S, Huang S. 2022. Electrochemical Synthesis of β-Keto Sulfonyl Fluorides via Radical Fluorosulfonylation of Vinyl Triflates. Org. Lett. 24(20):3702-3706. https://doi.org/10.1021/acs.orglett.2c01336
46.
Zhang X, Huang Y, Qin H, Baoguo Z, Rakesh KP, Tang H. 2021. Copper-Promoted Conjugate Addition of Carboxylic Acids to Ethenesulfonyl Fluoride (ESF) for Constructing Aliphatic Sulfonyl Fluorides. ACS Omega. 6(40):25972-25981. https://doi.org/10.1021/acsomega.1c02804
47.
Liu Y, Lin Q, Xiao Z, Zheng C, Guo Y, Chen Q, Liu C. 2019. Zinc‐Mediated Intermolecular Reductive Radical Fluoroalkylsulfination of Unsaturated Carbon–Carbon Bonds with Fluoroalkyl Bromides and Sulfur Dioxide. Chem.—Eur. J. 25(7):1824-1828. https://doi.org/10.1002/chem.201805526
48.
Li X, Chen HJ, Wang W, Ma M, Chen Y, Li Y, Pullarkat SA, Leung P. 2019. Palladacycle promoted asymmetric hydrophosphination of α,β-unsaturated sulfonyl fluorides. J. Organomet. Chem. 899120912. https://doi.org/10.1016/j.jorganchem.2019.120912
49.
Chen H, Hu Z, Qin H, Tang H. 2021. A novel three-component reaction for constructing indolizine-containing aliphatic sulfonyl fluorides. Org. Chem. Front. 8(6):1185-1189. https://doi.org/10.1039/d0qo01430c
50.
Alexakis A, Bäckvall JE, Krause N, Pàmies O, Diéguez M. 2008. Enantioselective Copper-Catalyzed Conjugate Addition and Allylic Substitution Reactions. Chem. Rev. 108(8):2796-2823. https://doi.org/10.1021/cr0683515
51.
Hong Y, Gandeepan P, Mannathan S, Lee W, Cheng C. 2014. Alkene-Assisted Nickel-Catalyzed Regioselective 1,4-Addition of Organoboronic Acid to Dienones: A Direct Route to All-Carbon Quaternary Centers. Org. Lett. 16(11):2806-2809. https://doi.org/10.1021/ol500838h
52.
Moku B, Fang W, Leng J, Kantchev EAB, Qin H. 2019. Rh(I)–Diene-Catalyzed Addition of (Hetero)aryl Functionality to 1,3-Dienylsulfonyl Fluorides Achieving Exclusive Regioselectivity and High Enantioselectivity: Generality and Mechanism. ACS Catal. 9(11):10477-10488. https://doi.org/10.1021/acscatal.9b03640
53.
Sidera M, Fletcher SP. 2015. Rhodium-catalysed asymmetric allylic arylation of racemic halides with arylboronic acids. Nat. Chem. 7(11):935-939. https://doi.org/10.1038/nchem.2360
54.
Takaya Y, Ogasawara M, Hayashi T, Sakai M, Miyaura N. 1998. Rhodium-Catalyzed Asymmetric 1,4-Addition of Aryl- and Alkenylboronic Acids to Enones. J. Am. Chem. Soc. 120(22):5579-5580. https://doi.org/10.1021/ja980666h
55.
Qin H, Zheng Q, Bare GAL, Wu P, Sharpless KB. 2016. A Heck–Matsuda Process for the Synthesis of β‐Arylethenesulfonyl Fluorides: Selectively Addressable Bis‐electrophiles for SuFEx Click Chemistry. Angew. Chem., Int. Ed. 55(45):14155-14158. https://doi.org/10.1002/anie.201608807
56.
Barrow AS, Smedley CJ, Zheng Q, Li S, Dong J, Moses JE. 2019. The growing applications of SuFEx click chemistry. Chem. Soc. Rev. 48(17):4731-4758. https://doi.org/10.1039/c8cs00960k
57.
Moku B, Fang W, Leng J, Li L, Zha G, Rakesh K, Qin H. 2019. Rh-Catalyzed Highly Enantioselective Synthesis of Aliphatic Sulfonyl Fluorides. iScience. 21695-705. https://doi.org/10.1016/j.isci.2019.10.051
58.
Colby DA, Bergman RG, Ellman JA. 2010. Rhodium-Catalyzed C−C Bond Formation via Heteroatom-Directed C−H Bond Activation. Chem. Rev. 110(2):624-655. https://doi.org/10.1021/cr900005n
59.
Deb A, Bag S, Kancherla R, Maiti D. 2014. Palladium-Catalyzed Aryl C–H Olefination with Unactivated, Aliphatic Alkenes. J. Am. Chem. Soc. 136(39):13602-13605. https://doi.org/10.1021/ja5082734
60.
De Almeida MV, Barton DHR, Bytheway I, Ferreira JA, Hall MB, Liu W, Taylor DK, Thomson L. 1995. Preparation and Thermal Decomposition of N,N'-Diacyl-N,N'-Dialkoxyhydrazines: Synthetic Applications and Mechanistic Insights. J. Am. Chem. Soc. 117(17):4870-4874. https://doi.org/10.1021/ja00122a018
61.
Fabry DC, Zoller J, Raja S, Rueping M. 2014. Combining Rhodium and Photoredox Catalysis for CH Functionalizations of Arenes: Oxidative Heck Reactions with Visible Light. Angew. Chem., Int. Ed. 53(38):10228-10231. https://doi.org/10.1002/anie.201400560
62.
Wang S, Li C, Leng J, Bukhari SNA, Qin H. 2018. Rhodium(iii)-catalyzed Oxidative Coupling of N-Methoxybenzamides and Ethenesulfonyl fluoride: a C–H Bond Activation Strategy for the Preparation of 2-Aryl ethenesulfonyl fluorides and Sulfonyl fluoride Substituted γ-Lactams. Org. Chem. Front. 5(9):1411-1415. https://doi.org/10.1039/c7qo01128h
63.
Yi J, Zhou X, Chen Q, Chen Z, Lu G, Weng J. 2022. Copper-catalyzed direct decarboxylative fluorosulfonylation of aliphatic carboxylic acids. Chem. Commun. 58(67):9409-9412. https://doi.org/10.1039/d2cc03221j
64.
Li Y, Chang X, Xiong Q, Dong X, Wang C. 2021. Cu-catalyzed endo-selective asymmetric 1,3-dipolar cycloaddition of azomethine ylides with ethenesulfonyl fluorides: Efficient access to chiral pyrrolidine-3-sulfonyl fluorides. Chin. Chem. Lett. 32(12):4029-4032. https://doi.org/10.1016/j.cclet.2021.05.063
65.
Chen J, Zhang Y, Zhu D, Zhang X, Yan M. 2022. Construction of Chiral Quaternary Carbon Stereocenters by Asymmetric Michael Addition of 4‐Amido‐5‐hydroxylpyrazoles to Ethylene Sulfonyl Fluoride. Asian J. Org. Chem. 11(4): https://doi.org/10.1002/ajoc.202200063
66.
Chen J, Zhu D, Zhang X, Yan M. 2021. Highly Enantioselective Addition of N-2,2,2-Trifluoroethylisatin Ketimines to Ethylene Sulfonyl Fluoride. J. Org. Chem. 86(3):3041-3048. https://doi.org/10.1021/acs.joc.0c02511
67.
Zhu D, Zhang X, Yan M. 2021. Enantioselective Addition of Azlactones to Ethylene Sulfonyl Fluoride via Dual Catalysis. Org. Lett. 23(11):4228-4232. https://doi.org/10.1021/acs.orglett.1c01193
68.
Chen J, Huang B, Wang Z, Zhang X, Yan M. 2019. Asymmetric Conjugate Addition of Ethylene Sulfonyl Fluorides to 3-Amido-2-oxindoles: Synthesis of Chiral Spirocyclic Oxindole Sultams. Org. Lett. 21(23):9742-9746. https://doi.org/10.1021/acs.orglett.9b03911
69.
Lee SB, Park JH, Bae HY. 2022. Hydrophobic Amplification Enabled High‐Turnover Phosphazene Superbase Catalysis. ChemSusChem. 15(15): https://doi.org/10.1002/cssc.202200634
70.
Grdadolnik J, Merzel F, Avbelj F. 2017. Origin of hydrophobicity and enhanced water hydrogen bond strength near purely hydrophobic solutes. Proc. Natl. Acad. Sci. U.S.A. 114(2):322-327. https://doi.org/10.1073/pnas.1612480114
71.
Delany EG, Fagan C, Gundala S, Zeitler K, Connon SJ. 2013. Aerobic oxidation of NHC-catalysed aldehyde esterifications with alcohols: benzoin, not the Breslow intermediate, undergoes oxidation. Chem. Commun. 49(58):6513. https://doi.org/10.1039/c3cc42597e
72.
Park JH, Lee SB, Koo BJ, Bae HY. 2022. β‐Aminosulfonyl Fluorides via Water‐Accelerated N‐Heterocyclic Carbene Catalysis. ChemSusChem. 15(18): https://doi.org/10.1002/cssc.202201000
73.
Bae HY, Song CE. 2015. Unprecedented Hydrophobic Amplification in Noncovalent Organocatalysis “on Water”: Hydrophobic Chiral Squaramide Catalyzed Michael Addition of Malonates to Nitroalkenes. ACS Catal. 5(6):3613-3619. https://doi.org/10.1021/acscatal.5b00685
74.
Pirrung MC. 2006. Acceleration of Organic Reactions through Aqueous Solvent Effects. Chem.—Eur. J. 12(5):1312-1317. https://doi.org/10.1002/chem.200500959
75.
Park JH, González-Montiel GA, Cheong PH, Bae HY. 2023. Alkyl Sulfonyl Fluorides Incorporating Geminal Dithioesters as SuFEx Click Hubs via Water-Accelerated Organosuperbase Catalysis. Org. Lett. 25(7):1056-1060. https://doi.org/10.1021/acs.orglett.2c04224
76.
Frye NL, Daniliuc CG, Studer A. 2022. Radical 1‐Fluorosulfonyl‐2‐alkynylation of Unactivated Alkenes. Angew. Chem., Int. Ed. 61(12): https://doi.org/10.1002/anie.202115593
77.
Shavnya A, Coffey SB, Hesp KD, Ross SC, Tsai AS. 2016. Reaction of Alkyl Halides with Rongalite: One-Pot and Telescoped Syntheses of Aliphatic Sulfonamides, Sulfonyl Fluorides, and Unsymmetrical Sulfones. Org. Lett. 18(22):5848-5851. https://doi.org/10.1021/acs.orglett.6b02894
78.
Liu Y, Wu H, Guo Y, Xiao J, Chen Q, Liu C. 2017. Trifluoromethylfluorosulfonylation of Unactivated Alkenes Using Readily Available Ag(O2CCF2SO2F) and N‐Fluorobenzenesulfonimide. Angew. Chem., Int. Ed. 56(48):15432-15435. https://doi.org/10.1002/anie.201709663
79.
Lin Q, Liu Y, Xiao Z, Zheng L, Zhou X, Guo Y, Chen Q, Zheng C, Liu C. 2019. Intermolecular oxidative radical fluoroalkylfluorosulfonylation of unactivated alkenes with (fluoroalkyl)trimethylsilane, silver fluoride, sulfur dioxide and N-fluorobenzenesulfonimide. Org. Chem. Front. 6(4):447-450. https://doi.org/10.1039/c8qo01192c
80.
Ma Z, Liu Y, Ma X, Hu X, Guo Y, Chen Q, Liu C. 2022. Aliphatic sulfonyl fluoride synthesis via reductive decarboxylative fluorosulfonylation of aliphatic carboxylic acid NHPI esters. Org. Chem. Front. 9(4):1115-1120. https://doi.org/10.1039/d1qo01655e
81.
Tang L, Yang Y, Wen L, Yang X, Wang Z. 2016. Catalyst-free radical fluorination of sulfonyl hydrazides in water. Green Chem. 18(5):1224-1228. https://doi.org/10.1039/c5gc02755a
82.
Talko A, Barbasiewicz M. 2018. Nucleophilic Fluorination with Aqueous Bifluoride Solution: Effect of the Phase-Transfer Catalyst. ACS Sustainable Chem. Eng. 6(5):6693-6701. https://doi.org/10.1021/acssuschemeng.8b00489
83.
Rojas JJ, Croft RA, Sterling AJ, Briggs EL, Antermite D, Schmitt DC, Blagojevic L, Haycock P, White AJP, Duarte F, et al. 2022. Amino-oxetanes as amide isosteres by an alternative defluorosulfonylative coupling of sulfonyl fluorides. Nat. Chem. 14(2):160-169. https://doi.org/10.1038/s41557-021-00856-2
84.
Croft RA, Mousseau JJ, Choi C, Bull JA. 2018. Lithium‐Catalyzed Thiol Alkylation with Tertiary and Secondary Alcohols: Synthesis of 3‐Sulfanyl‐Oxetanes as Bioisosteres. Chem.—Eur. J. 24(4):818-821. https://doi.org/10.1002/chem.201705576
Inicie sesión para continuar.

Para seguir leyendo, inicie sesión o cree una cuenta.

¿No tiene una cuenta?