Saltar al contenido
Merck

The Pseudomonas syringae type III effector HopF2 suppresses Arabidopsis stomatal immunity.

PloS one (2014-12-17)
Brenden Hurley, Donghyuk Lee, Adam Mott, Michael Wilton, Jun Liu, Yulu C Liu, Stephane Angers, Gitta Coaker, David S Guttman, Darrell Desveaux
RESUMEN

Pseudomonas syringae subverts plant immune signalling through injection of type III secreted effectors (T3SE) into host cells. The T3SE HopF2 can disable Arabidopsis immunity through Its ADP-ribosyltransferase activity. Proteomic analysis of HopF2 interacting proteins identified a protein complex containing ATPases required for regulating stomatal aperture, suggesting HopF2 may manipulate stomatal immunity. Here we report HopF2 can inhibit stomatal immunity independent of its ADP-ribosyltransferase activity. Transgenic expression of HopF2 in Arabidopsis inhibits stomatal closing in response to P. syringae and increases the virulence of surface inoculated P. syringae. Further, transgenic expression of HopF2 inhibits flg22 induced reactive oxygen species production. Intriguingly, ADP-ribosyltransferase activity is dispensable for inhibiting stomatal immunity and flg22 induced reactive oxygen species. Together, this implies HopF2 may be a bifunctional T3SE with ADP-ribosyltransferase activity required for inhibiting apoplastic immunity and an independent function required to inhibit stomatal immunity.

MATERIALES
Referencia del producto
Marca
Descripción del producto

Sigma-Aldrich
Medio basal Murashige y Skoog, powder, suitable for plant cell culture, with Gamborg′s vitamins