Saltar al contenido
Merck
  • Formulation and development of pH-independent/dependent sustained release matrix tablets of ondansetron HCl by a continuous twin-screw melt granulation process.

Formulation and development of pH-independent/dependent sustained release matrix tablets of ondansetron HCl by a continuous twin-screw melt granulation process.

International journal of pharmaceutics (2015-04-12)
Hemlata Patil, Roshan V Tiwari, Sampada B Upadhye, Ronald S Vladyka, Michael A Repka
RESUMEN

The objective of the present study was to develop pH-independent/dependent sustained release (SR) tablets of ondansetron HCl dihydrate (OND), a selective 5-HT3 receptor antagonist that is used for prevention of nausea and vomiting caused by chemotherapy, radiotherapy and postoperative treatment. The challenge with the OND API is its pH-dependent solubility and relatively short elimination half-life. Therefore, investigations were made to solve these problems in the current study. Formulations were prepared using stearic acid as a binding agent via a melt granulation process in a twin-screw extruder. The micro-environmental pH of the tablet was manipulated by the addition of fumaric acid to enhance the solubility and release of OND from the tablet. The in vitro release study demonstrated sustained release for 24h with 90% of drug release in formulations using stearic acid in combination with ethyl cellulose, whereas 100% drug release in 8h for stearic acid-hydroxypropylcellulose matrices. The formulation release kinetics was correlated to the Higuchi diffusion model and a non-Fickian drug release mechanism. The results of the present study demonstrated for the first time the pH dependent release from hydrophilic-lipid matrices as well as pH independent release from hydrophobic-lipid matrices for OND SR tablets manufactured by means of a continuous melt granulation technique utilizing a twin-screw extruder.

MATERIALES
Referencia del producto
Marca
Descripción del producto

Sigma-Aldrich
Ácido clorhídrico, ACS reagent, 37%
Sigma-Aldrich
Ácido clorhídrico, ACS reagent, 37%
Sigma-Aldrich
Cloruro de hidrógeno solution, 4.0 M in dioxane
Sigma-Aldrich
Ácido clorhídrico solution, 1.0 N, BioReagent, suitable for cell culture
Sigma-Aldrich
Ácido clorhídrico, meets analytical specification of Ph. Eur., BP, NF, fuming, 36.5-38%
Sigma-Aldrich
Ácido clorhídrico, 37 wt. % in H2O, 99.999% trace metals basis
Sigma-Aldrich
Ácido clorhídrico, 36.5-38.0%, BioReagent, for molecular biology
Sigma-Aldrich
Cloruro de hidrógeno solution, 2.0 M in diethyl ether
Sigma-Aldrich
Ácido clorhídrico, puriss. p.a., ACS reagent, reag. ISO, reag. Ph. Eur., fuming, ≥37%, APHA: ≤10
Sigma-Aldrich
Sodium phosphate, 96%
Supelco
Ácido clorhídrico solution, volumetric, 0.1 M HCl (0.1N), endotoxin free
Sigma-Aldrich
Stearic acid, Grade I, ≥98.5% (capillary GC)
Sigma-Aldrich
Cloruro de hidrógeno solution, 1.0 M in diethyl ether
Sigma-Aldrich
N,N′-Disuccinimidyl carbonate, ≥95%
Sigma-Aldrich
Ácido clorhídrico, puriss., 24.5-26.0%
Sigma-Aldrich
Ácido clorhídrico solution, ~6 M in H2O, for amino acid analysis
Sigma-Aldrich
Cloruro de hidrógeno solution, 3 M in cyclopentyl methyl ether (CPME)
Sigma-Aldrich
Ácido clorhídrico solution, 32 wt. % in H2O, FCC
Sigma-Aldrich
Stearic acid, ≥95%, FCC, FG
Sigma-Aldrich
Cloruro de hidrógeno solution, 1.0 M in acetic acid
Sigma-Aldrich
Stearic acid, reagent grade, 95%
Sigma-Aldrich
Fumaric acid, FCC, FG