Saltar al contenido
Merck
  • Self-assembly of tetrakis (3-trifluoromethylphenoxy) phthalocyaninato cobalt(II) on multiwalled carbon nanotubes and their amperometric sensing application for nitrite.

Self-assembly of tetrakis (3-trifluoromethylphenoxy) phthalocyaninato cobalt(II) on multiwalled carbon nanotubes and their amperometric sensing application for nitrite.

ACS applied materials & interfaces (2013-03-05)
Pan Li, Yu Ding, Ao Wang, Lin Zhou, Shaohua Wei, Yiming Zhou, Yawen Tang, Yu Chen, Chenxin Cai, Tianhong Lu
RESUMEN

In this work, the soluble cobalt phthalocyanine functionalized multiwalled carbon nanotubes (MWCNTs) are synthesized by π-π stacking interaction between tetrakis (3-trifluoromethylphenoxy) phthalocyaninato cobalt(II) (CoPcF) complex and MWCNTs. The physical properties of CoPcF-MWCNTs hybrids are evaluated using spectroscopy (UV-vis, XPS, and Raman) and electron microscopy (TEM and SEM). Subsequently, an amperometric nitrite electrochemical sensor is designed by immobilizing CoPcF-MWCNTs hybrids on the glassy carbon electrode. The immobilized CoPcF complex shows the fast electron transfer rate and excellent electrocatalytic activity for the oxidation of nitrite. Under optimum experimental conditions, the proposed nitrite electrochemical sensor shows the fast response (less than 2 s), wide linear range (9.6 × 10(-8) to 3.4 × 10(-4) M) and low detection limit (6.2 × 10(-8) M) because of the good mass transport, fast electron transfer rate, and excellent electrocatalytic activity.

MATERIALES
Referencia del producto
Marca
Descripción del producto

Sigma-Aldrich
Cobalt(II) phthalocyanine, β-form, Dye content 97 %