Saltar al contenido
Merck
  • Identification of UBE3A Protein in CSF and Extracellular Space of the Hippocampus Suggest a Potential Novel Function in Synaptic Plasticity.

Identification of UBE3A Protein in CSF and Extracellular Space of the Hippocampus Suggest a Potential Novel Function in Synaptic Plasticity.

Autism research : official journal of the International Society for Autism Research (2021-01-22)
Andie Dodge, Jonathan Willman, Matthew Willman, Austin W Nenninger, Nicole K Morrill, Kristina Lamens, Hayden Greene, Edwin J Weeber, Kevin R Nash
RESUMEN

Disruptions to the maternally inherited allele UBE3A, encoding for an E3 ubiquitin ligase, leads to the manifestation of Angelman Syndrome (AS). While this disorder is rare, the symptoms are severe and lifelong including but not limited to: intractable seizures, abnormal EEG's, ataxic gait, lack of speech, and most notably an abnormally happy demeanor with easily provoked laughter. Currently, little is known about the neurophysiological underpinnings of UBE3A leading to such globally severe phenotypes. Utilizing the newest AS rat model, comprised of a full UBE3A deletion, we aimed to elucidate novel mechanistic actions and potential therapeutic targets. This report demonstrates for the first time that catalytically active UBE3A protein is detectable within cerebrospinal fluid (CSF) of wild type rats but distinctly absent in AS rat CSF. Microdialysis within the rat hippocampus also showed that UBE3A protein is located in the interstitial fluid of wild type rat brains but absent in AS animals. This protein maintains catalytic activity and appears to be regulated in a dynamic activity-dependent manner. LAY SUMMARY: Angelman syndrome (AS) is a rare genetic disorder caused by the loss of the UBE3A gene within the central nervous system. Although we have identified the gene responsible for AS, we still have a long way to go to fully understand its function in vivo. Here we report that UBE3A is present within normal cerebrospinal fluid (CSF) but distinctly absent in AS CSF. Furthermore, we demonstrate that UBE3A is secreted and that this may occur in a dynamic activity-dependent fashion. Extracellular UBE3A maintained its ubiquitinating activity, thus suggesting that UBE3A may have a novel role outside of neurons. Autism Res 2021, 14: 645-655. © 2021 International Society for Autism Research and Wiley Periodicals LLC.

MATERIALES
Referencia del producto
Marca
Descripción del producto

Sigma-Aldrich
Anti-UBE3A Antibody, clone 10H7.1, clone 10H7.1, from mouse