Saltar al contenido
Merck

Epigenetic regulation of chemokine/chemokine receptor expression.

Methods in molecular biology (Clifton, N.J.) (2013-04-30)
Anne-Marie Baird, Kenneth J O'Byrne, Steven G Gray
RESUMEN

Epigenetic regulation of gene expression is an important event for normal cellular homeostasis. Gene expression may be "switched" on or "turned" off via epigenetic means through adjustments in DNA architecture. These structural alterations result from changes to the DNA methylation status in addition to histone posttranslational modifications such as acetylation and methylation. Drugs which can alter the status of these epigenetic markers are currently undergoing clinical trials in a wide variety of diseases, including cancer.We illustrate the treatment of cell lines with histone deacetylase (HDi) and DNA methyltransferase inhibitors and the subsequent RNA isolation and reverse transcriptase polymerase chain reaction for several members of the CXC (ELR(+)) chemokine family. In addition we describe a chromatin immunoprecipitation assay to determine the association between chromatin transcription markers and DNA following pretreatment of cell cultures with an HDi, Trichostatin A (TSA). This assay allows us to determine whether treatment with TSA dynamically remodels the promoter region of our selected genes, as judged by the differences in the PCR product between our treated and untreated samples.

MATERIALES
Referencia del producto
Marca
Descripción del producto

Sigma-Aldrich
Anticuerpo anti-acetil-histona H3, from rabbit
Sigma-Aldrich
Anticuerpo anti-acetil-histona H4, 1 mg/mL, Upstate®