Saltar al contenido
Merck
  • Design and Synthesis of Pyrrolo[2,3-d]pyrimidine-Derived Leucine-Rich Repeat Kinase 2 (LRRK2) Inhibitors Using a Checkpoint Kinase 1 (CHK1)-Derived Crystallographic Surrogate.

Design and Synthesis of Pyrrolo[2,3-d]pyrimidine-Derived Leucine-Rich Repeat Kinase 2 (LRRK2) Inhibitors Using a Checkpoint Kinase 1 (CHK1)-Derived Crystallographic Surrogate.

Journal of medicinal chemistry (2021-06-30)
Douglas S Williamson, Garrick P Smith, Gitte K Mikkelsen, Thomas Jensen, Pamela Acheson-Dossang, Lassina Badolo, Simon T Bedford, Victoria Chell, I-Jen Chen, Pawel Dokurno, Morten Hentzer, Samantha Newland, Stuart C Ray, Terry Shaw, Allan E Surgenor, Lindsey Terry, Yikang Wang, Kenneth V Christensen
RESUMEN

Inhibitors of leucine-rich repeat kinase 2 (LRRK2) and mutants, such as G2019S, have potential utility in Parkinson's disease treatment. Fragment hit-derived pyrrolo[2,3-d]pyrimidines underwent optimization using X-ray structures of LRRK2 kinase domain surrogates, based on checkpoint kinase 1 (CHK1) and a CHK1 10-point mutant. (2R)-2-Methylpyrrolidin-1-yl derivative 18 (LRRK2 G2019S cKi 0.7 nM, LE 0.66) was identified, with increased potency consistent with an X-ray structure of 18/CHK1 10-pt. mutant showing the 2-methyl substituent proximal to Ala147 (Ala2016 in LRRK2). Further structure-guided elaboration of 18 gave the 2-[(1,3-dimethyl-1H-pyrazol-4-yl)amino] derivative 32. Optimization of 32 afforded diastereomeric oxolan-3-yl derivatives 44 and 45, which demonstrated a favorable in vitro PK profile, although they displayed species disconnects in the in vivo PK profile, and a propensity for P-gp- and/or BCRP-mediated efflux in a mouse model. Compounds 44 and 45 demonstrated high potency and exquisite selectivity for LRRK2 and utility as chemical probes for the study of LRRK2 inhibition.

MATERIALES
Referencia del producto
Marca
Descripción del producto

Sigma-Aldrich
(R)-(−)-2-Methylpyrrolidine