Saltar al contenido
Merck

Organic monolayers disrupt plastic flow in metals.

Science advances (2020-12-18)
Tatsuya Sugihara, Anirudh Udupa, Koushik Viswanathan, Jason M Davis, Srinivasan Chandrasekar
RESUMEN

Adsorbed films often influence mechanical behavior of surfaces, leading to well-known mechanochemical phenomena such as liquid metal embrittlement and environment-assisted cracking. Here, we demonstrate a mechanochemical phenomenon wherein adsorbed long-chain organic monolayers disrupt large-strain plastic deformation in metals. Using high-speed in situ imaging and post facto analysis, we show that the monolayers induce a ductile-to-brittle transition. Sinuous flow, characteristic of ductile metals, gives way to quasi-periodic fracture, typical of brittle materials, with 85% reduction in deformation forces. By independently varying surface energy and molecule chain length via molecular self-assembly, we argue that this "embrittlement" is driven by adsorbate-induced surface stress, as against surface energy reduction. Our observations, backed by modeling and molecular simulations, could provide a basis for explaining diverse mechanochemical phenomena in solids. The results also have implications for manufacturing processes such as machining and comminution, and wear.

MATERIALES
Referencia del producto
Marca
Descripción del producto

Sigma-Aldrich
Trichloro(octyl)silane, 97%