Saltar al contenido
Merck
  • 3D Interconnected Boron Nitride Networks in Epoxy Composites via Coalescence Behavior of SAC305 Solder Alloy as a Bridging Material for Enhanced Thermal Conductivity.

3D Interconnected Boron Nitride Networks in Epoxy Composites via Coalescence Behavior of SAC305 Solder Alloy as a Bridging Material for Enhanced Thermal Conductivity.

Polymers (2020-09-03)
Youjin Kim, Jooheon Kim
RESUMEN

In this study, hybrid fillers of spherically shaped aggregated boron nitride (a-BN) attached with SAC305, were fabricated via simple stirring and the vacuum filtration method. a-BN was used as the primary conductive filler incorporated with epoxy resin, and these fillers were interconnected each other via the coalescence behavior of SAC305 during the thermal curing process. Based on controlled a-BN content (1 g) on 3 g of epoxy, the thermal conductivity of the composite filled with hybrid filler (a-BN:SAC305 = 1:0.5) reached 0.95 W/mK (33 wt%) due to the construction of the 3D filler network, whereas that of composite filled with raw a-BN was only 0.60 W/mK (25 wt%). The thermal conductivity of unfilled epoxy was 0.19 W/mK.

MATERIALES
Referencia del producto
Marca
Descripción del producto

Sigma-Aldrich
Fuller′s earth, -100 mesh particle size