Saltar al contenido
Merck

microRNAs miR-124, let-7d and miR-181a regulate cocaine-induced plasticity.

Molecular and cellular neurosciences (2009-08-26)
Vijay Chandrasekar, Jean-Luc Dreyer
RESUMEN

MicroRNAs play key regulatory roles in cellular processes including neurogenesis, synapse development and plasticity in the brain. Psychostimulants induce strong neuroadaptive changes through a surfeit of gene regulatory mechanisms leading to addiction. MicroRNA profiling for identifying miRNAs regulating cocaine-induced, plasticity-related genes revealed significant regulation of a set of miRNAs upon cocaine administration, especially let-7d, miR-181a and the brain-specific miR-124. These miRNAs target many genes involved in cocaine addiction. Precursor and mature miRNA quantification by qRT-PCR showed that miR-124 and let-7d are significantly downregulated, whereas miR-181a is induced in the mesolimbic dopaminergic system under chronic cocaine administration. Results were confirmed by in situ hybridization, Northern blots, FISH analysis and RNase protection assay. Using lentiviral-mediated miRNA expression, we show a significant downregulation of BDNF and D3R both at mRNA and protein levels by miR-124 and let-7d, respectively. Our data suggest that miR-124, let-7d and miR-181a may be involved in a complex feedback loop with cocaine-responsive plasticity genes, highlighting the possibility that some miRNAs are key regulators of the reward circuit and may be implicated in addiction.

MATERIALES
Referencia del producto
Marca
Descripción del producto

Sigma-Aldrich
Anti-Dopamine D3 Receptor Antibody, cytoplasmic domain, Chemicon®, from rabbit