Skip to Content
Merck
  • Ikaros deletions in BCR-ABL-negative childhood acute lymphoblastic leukemia are associated with a distinct gene expression signature but do not result in intrinsic chemoresistance.

Ikaros deletions in BCR-ABL-negative childhood acute lymphoblastic leukemia are associated with a distinct gene expression signature but do not result in intrinsic chemoresistance.

Pediatric blood & cancer (2014-07-01)
Nicholas A Vitanza, Wafik Zaky, Roy Blum, Julia A Meyer, Jinhua Wang, Teena Bhatla, Debra J Morrison, Elizabeth A Raetz, William L Carroll
ABSTRACT

Ikaros, the product of IKZF1, is a regulator of lymphoid development and polymorphisms in the gene have been associated with the acute lymphoblastic leukemia (ALL). Additionally, IKZF1 deletions and mutations identify high-risk biological subsets of childhood ALL [Georgopoulos et al. Cell 1995;83(2):289-299; Mullighan et al. N Engl J Md 2009;360(5):470-480]. To discover the underlying pathways modulated by Ikaros we performed gene expression and gene ontology analysis in IKZF1 deleted primary B-ALL pediatric patient samples. To validate downstream targets we performed qPCR on individual patient samples. We also created IKZF1 knockdown B-ALL cell lines with over 50% reduction of Ikaros, mimicking haplosufficient Ikaros deletions, and again performed qPCR to investigate the downstream targets. Finally, to understand the association of Ikaros deletion with a poor prognosis we challenged our IKZF1 knockdown cell lines with chemotherapy and compared responses to IKZF1 wild-type controls. We report a specific gene expression signature of 735 up-regulated and 473 down-regulated genes in IKZF1 deleted primary B-ALL pediatric patient samples. Gene ontology studies revealed an up-regulation of genes associated with cell adhesion, cytoskeletal regulation, and motility in IKZF deleted patient samples. Validated up-regulated target genes in IKZF1 deleted patient samples included CTNND1 and PVRL2 (P = 0.0003 and P = 0.001), and RAB3IP and SPIB (P = 0.005 and P = 0.032) were down-regulated. In further studies in IKZF1 knockdown cell lines, apoptosis assays showed no significant chemoresistance. IKZF1 knockdown alone does not impart intrinsic chemotherapy resistance suggesting that the association with a poor prognosis may be due to additional lesions, microenvironmental interactions with the bone marrow niche, or other factors.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
MISSION® esiRNA, targeting human IKZF1
SAFC
Sodium chloride solution, 5 M
Sigma-Aldrich
Sodium chloride, BioPerformance Certified, ≥99% (titration), suitable for insect cell culture, suitable for plant cell culture
Sigma-Aldrich
Sodium chloride, random crystals, optical grade, 99.9% trace metals basis
Sigma-Aldrich
Sodium chloride, 99.999% trace metals basis
Sigma-Aldrich
Sodium chloride, AnhydroBeads, −10 mesh, 99.999% trace metals basis
Sigma-Aldrich
Sodium chloride, tested according to Ph. Eur.
Supelco
Sodium chloride, reference material for titrimetry, certified by BAM, >99.5%
Sigma-Aldrich
Sodium chloride solution, 0.85%
Sigma-Aldrich
Sodium chloride-35Cl, 99 atom % 35Cl
Sigma-Aldrich
Sodium chloride solution, 5 M in H2O, BioReagent, for molecular biology, suitable for cell culture
Sigma-Aldrich
Sodium chloride, BioXtra, ≥99.5% (AT)
Sigma-Aldrich
Sodium chloride, tablet
Sigma-Aldrich
Sodium chloride solution, 0.9% in water, BioXtra, suitable for cell culture
Sigma-Aldrich
Sodium chloride, BioReagent, suitable for cell culture, suitable for insect cell culture, suitable for plant cell culture, ≥99%
Sigma-Aldrich
Sodium chloride, meets analytical specification of Ph. Eur., BP, USP, 99.0-100.5%
Sigma-Aldrich
Sodium chloride solution, 5 M
Sigma-Aldrich
Sodium chloride, for molecular biology, DNase, RNase, and protease, none detected, ≥99% (titration)
Sigma-Aldrich
Sodium chloride solution, BioUltra, for molecular biology, ~5 M in H2O
Sigma-Aldrich
Sodium chloride, BioUltra, for molecular biology, ≥99.5% (AT)
Supelco
Sodium chloride, Pharmaceutical Secondary Standard; Certified Reference Material