Skip to Content
Merck
  • Chloroquine impairs visual transduction via modulation of acid sensing ion channel 1a.

Chloroquine impairs visual transduction via modulation of acid sensing ion channel 1a.

Toxicology letters (2014-05-14)
Xiaoyu Li, Jianchun Fei, Zhen Lei, Kejing Liu, Jianbo Wu, Tao Meng, Jingui Yu, Jingxin Li
ABSTRACT

Acid-sensing ion channels (ASICs) are extracellular pH sensors activated by protons, which influence retinal activity and phototransduction. Among all ASICs, ASIC1a is abundantly expressed in the retina and involved in normal retinal activity. Chloroquine, which has been used in the treatment of malaria, rheumatoid arthritis and systemic lupus erythematosus, has been shown to be toxic to the retina. However, the underlying mechanisms remain unclear. In this study, we investigated the role of chloroquine in phototransduction by measuring the electroretinogram (ERG). The effect of chloroquine on acid-evoked currents in either isolated rat retinal ganglion neurons (RGNs) or Chinese hamster ovary (CHO) cells transfected with ASIC1a were assessed using a whole-cell patch-clamp technique. Chloroquine reduced the b-wave of scotopic 0.01 and photopic 3.0 and amplitudes of oscillatory potentials (OPs), an effect which was almost completely reversed by PcTx1, an ASIC1a-specific channel blocker. Further, patch-clamp experiments demonstrated that chloroquine reduced the peak current amplitude and prolonged the activation and desensitization of ASIC1a currents. These chloroquine-induced effects on the kinetics of ASIC 1a were dose-, pH- and Ca(2+)-dependent. Taken together, these results demonstrate that chloroquine affects vision conduction by directly modifying the kinetics of ASIC1a. Such a mechanism, may, in part, explain the retinal toxicity of chloroquine.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Benoxinate hydrochloride, meets USP testing specifications
Sigma-Aldrich
Tropicamide, solid