Skip to Content
Merck
  • Effect of monensin on in vitro fermentation of silages and microbial protein synthesis.

Effect of monensin on in vitro fermentation of silages and microbial protein synthesis.

Archives of animal nutrition (2013-05-18)
Gerald Wischer, Jeannette Boguhn, Herbert Steingaß, Margit Schollenberger, Karin Hartung, Markus Rodehutscord
ABSTRACT

The objective of the study was to investigate the effects of monensin on silage fermentation and microbial net protein synthesis. In Experiment 1, monensin (0.5, 1, 2, 4, 6, or 10 µg) was added to syringes that contained 120 mg of grass silage (GS), grass silage and concentrate (GS + C), or maize silage (MS), resulting in concentrations of 4.2, 8.3, 16.7, 33.3, 50.0 and 83.3 mg monensin/kg feed. Samples were incubated for 24 h to determine the monensin concentration that resulted in the maximum reduction in methane production without effects on the total gas production. In Experiment 2, GS and GS + C were incubated in a rumen simulation technique (Rusitec) to assess the monensin effects (133 and 266 mg/kg feed) on the production of total gas, methane and volatile fatty acids (VFA), degradation of nutrients and microbial net protein synthesis. In Experiment 1, methane production was reduced without significant effects on the total gas production; the reductions were 17% (GS), 10% (GS + C) and 13% (MS) with 16.7 (GS), 50.0 (GS + C) and 33.3 (MS) mg monensin/kg feed. Monensin reduced the total gas and methane production in GS and GS + C in Experiment 2. Propionate production was enhanced by monensin, accompanied by a decrease in acetate production. Along with a reduction in crude protein (CP) degradation, monensin reduced the ammonia nitrogen concentration in the effluent of both treatments. While the protein produced by liquid-associated microbes increased with monensin, protein production by solid-associated microbes was reduced. Total microbial net protein synthesis increased in the presence of monensin. Monensin influenced the production of total gas, methane and VFA from the silages without an effect on the degradation of organic matter (OM). Different microbial fractions were affected differently by monensin supplementation. If monensin is used as a tool to reduce methane emission, the supplementation level must be carefully chosen to avoid negative effects on overall fermentation in the rumen.

MATERIALS
Product Number
Brand
Product Description

Supelco
Monensin sodium salt hydrate, VETRANAL®, analytical standard
Sigma-Aldrich
Monensin sodium salt, 90-95% (TLC)