Skip to Content
Merck
  • Identification and characterization of a new cell surface protein possessing factor H-binding activity in the swine pathogen and zoonotic agent Streptococcus suis.

Identification and characterization of a new cell surface protein possessing factor H-binding activity in the swine pathogen and zoonotic agent Streptococcus suis.

Journal of medical microbiology (2013-04-27)
Katy Vaillancourt, Laetitia Bonifait, Louis Grignon, Michel Frenette, Marcelo Gottschalk, Daniel Grenier
ABSTRACT

Streptococcus suis is a major swine pathogen and an emerging zoonotic agent. The ability of pathogenic bacteria to bind the complement regulator factor H on their cell surface may allow them to avoid complement attack and phagocytosis. The aim of this study was to characterize a new cell surface protein possessing factor H-binding activity in S. suis serotype 2. The capacity of S. suis to bind the complement regulator factor H on its surface was demonstrated by ELISA. Using a factor I-cofactor assay, it was found that the functional activity of factor H bound to S. suis was kept. Since the product of gene SSU0186 in S. suis P1/7 shared similarity with a Streptococcus pneumoniae protein (named PspC) possessing factor H-binding activity, it was proposed as a putative factor H receptor in S. suis. SSU0186 has a 1686 bp open reading frame encoding a 561 amino acid protein containing the Gram-positive cell wall anchoring motif (LPXTG) at the carboxy-terminal, an amino-terminal signal sequence, an α-helix domain, a proline-rich region and a G5 domain. The SSU0186 gene was cloned in Escherichia coli and the purified recombinant factor H-binding protein showed a molecular mass of 95 kDa, as determined by SDS-PAGE. The protein possessed the functional property of binding factor H. Sera from S. suis-infected pigs reacted with the recombinant factor H receptor, suggesting that it is produced during the course of infections. In conclusion, we identified a novel S. suis cell surface protein that binds the complement factor H. This cell surface protein may help S. suis to resist complement attack and phagocytosis and contribute to pathogenesis.