Skip to Content
Merck
  • Improved HPLC-MS/MS method for determination of isoxaflutole (balance) and its metabolites in soils and forage plants.

Improved HPLC-MS/MS method for determination of isoxaflutole (balance) and its metabolites in soils and forage plants.

Journal of agricultural and food chemistry (2007-04-17)
C H Lin, R N Lerch, H E Garrett, Y-X Li, M F George
ABSTRACT

A robust multi-residue procedure is needed for the analysis of the pro-herbicide isoxaflutole and its degradates in soil and plant materials at environmentally relevant (<1 microg kg-1) levels. An analytical method using turbo-spray and heat-nebulizer high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) was developed for the analysis of isoxaflutole (IXF) and its two metabolites, diketonitrile (DKN) and the benzoic acid metabolite (BA), at sub-microgram per kilogram levels in soil and plant samples. The average recoveries of the three compounds in spiked soil and plant samples ranged from 84 to 110% and 94 to 105%, respectively. The limits of quantification were validated at 0.06 microg kg-1 for soil and 0.3 microg kg-1 for plant samples. The limits of detection (LOD) for soil analysis were 0.01, 0.002, and 0.01 microg kg-1 for IXF, DKN, and BA, respectively. Corresponding LOD for the plant analysis method were 0.05, 0.01, and 0.05 microg kg-1. The developed method was validated using forage grass and soil samples collected from a field lysimeter study in which IXF was applied to each of four forage treatments. Forage plants and soils were sampled for analyses 25 days after IXF application to the soil. In soils, IXF was not detected in any treatment, and DKN was the predominant metabolite found. In forage plants, the concentrations of DKN and BA were 10-100-fold higher than that in soil samples, but IXF was not detected in any forage plants. The much higher proportion of BA to DKN in plant tissues (23-53%), as compared to soils (0-5%), suggested that these forages were capable of detoxifying DKN. The developed methods provided LODs at sub-microgram per kilogram levels to determine the fate of IXF and its metabolites in soils and forage plants, and they also represent considerable improvements in extraction recovery rates and detection sensitivity as compared to previous analytical methods for these compounds.

MATERIALS
Product Number
Brand
Product Description

Supelco
Isoxaflutole, PESTANAL®, analytical standard