Skip to Content
Merck

Tight association of autophagy and cell cycle in leukemia cells.

Cellular & molecular biology letters (2022-04-07)
Alena Gschwind, Christian Marx, Marie D Just, Paula Severin, Hannah Behring, Lisa Marx-Blümel, Sabine Becker, Linda Rothenburger, Martin Förster, James F Beck, Jürgen Sonnemann
ABSTRACT

Autophagy plays an essential role in maintaining cellular homeostasis and in the response to cellular stress. Autophagy is also involved in cell cycle progression, yet the relationship between these processes is not clearly defined. In exploring this relationship, we observed that the inhibition of autophagy impaired the G2/M phase-arresting activity of etoposide but enhanced the G1 phase-arresting activity of palbociclib. We further investigated the connection of basal autophagy and cell cycle by utilizing the autophagosome tracer dye Cyto-ID in two ways. First, we established a double-labeling flow-cytometric procedure with Cyto-ID and the DNA probe DRAQ5, permitting the cell cycle phase-specific determination of autophagy in live cells. This approach demonstrated that different cell cycle phases were associated with different autophagy levels: G1-phase cells had the lowest level, and G2/M-phase cells had the highest one. Second, we developed a flow-cytometric cell-sorting procedure based on Cyto-ID that separates cell populations into fractions with low, medium, and high autophagy. Cell cycle analysis of Cyto-ID-sorted cells confirmed that the high-autophagy fraction contained a much higher percentage of G2/M-phase cells than the low-autophagy fraction. In addition, Cyto-ID-based cell sorting also proved to be useful for assessing other autophagy-related processes: extracellular flux analysis revealed metabolic differences between the cell populations, with higher autophagy being associated with higher respiration, higher mitochondrial ATP production, and higher glycolysis. This work provides clear evidence of high autophagy in G2/M-phase cells by establishing a novel cell sorting technique based on Cyto-ID.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Monoclonal Anti-β-Actin antibody produced in mouse, clone AC-15, ascites fluid
Sigma-Aldrich
DRAQ5, ≥98% (HPLC)
Sigma-Aldrich
Anti-phospho-Histone H3 (Ser10) Antibody, Mitosis Marker, Upstate®, from rabbit