Skip to Content
Merck

Wip1 regulates Smad4 phosphorylation and inhibits TGF-β signaling.

EMBO reports (2020-02-28)
Dong-Seok Park, Gang-Ho Yoon, Eun-Young Kim, Taehyeong Lee, Kyuhee Kim, Peter Cw Lee, Eun-Ju Chang, Sun-Cheol Choi
ABSTRACT

The tumor suppressor Smad4, a key mediator of the TGF-β/BMP pathways, is essential for development and tissue homeostasis. Phosphorylation of Smad4 in its linker region catalyzed by the mitogen-activated protein kinase (MAPK) plays a pivotal role in regulating its transcriptional activity and stability. In contrast, roles of Smad4 dephosphorylation as a control mechanism of TGF-β/BMP signaling and the phosphatases responsible for its dephosphorylation remain so far elusive. Here, we identify Wip1 as a Smad4 phosphatase. Wip1 selectively binds and dephosphorylates Smad4 at Thr277, a key MAPK phosphorylation site, thereby regulating its nuclear accumulation and half-life. In Xenopus embryos, Wip1 limits mesoderm formation and favors neural induction by inhibiting TGF-β/BMP signals. Wip1 restrains TGF-β-induced growth arrest, migration, and invasion in human cells and enhances the tumorigenicity of cancer cells by repressing the antimitogenic activity of Smad4. We propose that Wip1-dependent dephosphorylation of Smad4 is critical for the regulation of TGF-β signaling.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Monoclonal ANTI-FLAG® M2 antibody produced in mouse, 1 mg/mL, clone M2, affinity isolated antibody, buffered aqueous solution (50% glycerol, 10 mM sodium phosphate, and 150 mM NaCl, pH 7.4)
Sigma-Aldrich
DL-Cysteine, technical grade
Sigma-Aldrich
MISSION® esiRNA, targeting human PPM1D