Skip to Content
Merck
  • Isolated cell-bound membrane vesicles (CBMVs) as a novel class of drug nanocarriers.

Isolated cell-bound membrane vesicles (CBMVs) as a novel class of drug nanocarriers.

Journal of nanobiotechnology (2020-05-08)
Yang Zhang, Yang Liu, Wendiao Zhang, Qisheng Tang, Yun Zhou, Yuanfang Li, Tong Rong, Huaying Wang, Yong Chen
ABSTRACT

Cell-bound membrane vesicles (CBMVs) are a type of membrane vesicles different from the well-known extracellular vesicles (EVs). In recent years, the applications of EVs as drug delivery systems have been studied widely. A question may arise whether isolated CBMVs also have the possibility of being recruited as a drug delivery system or nanocarrier? To test the possibility, CBMVs were isolated/purified from the surfaces of cultured endothelial cells, loaded with a putative antitumor drug doxorubicin (Dox), and characterized. Subsequently, cellular experiments and animal experiments using mouse models were performed to determine the in vitro and in vivo antitumor effects of Dox-loaded CBMVs (Dox-CBMVs or Dox@CBMVs), respectively. Both Dox-free and Dox-loaded CBMVs were globular-shaped and nanometer-sized with an average diameter of ~ 300-400 nm. Dox-CBMVs could be internalized by cells and could kill multiple types of cancer cells. The in vivo antitumor ability of Dox-CBMVs also was confirmed. Moreover, Quantifications of blood cells (white blood cells and platelets) and specific enzymes (aspartate aminotransferase and creatine kinase isoenzymes) showed that Dox-CBMVs had lower side effects compared with free Dox. The data show that the CBMV-entrapped Doxorubicin has the antitumor efficacy with lower side effects. This study provides evidence supporting the possibility of isolated cell-bound membrane vesicles as a novel drug nanocarrier.

MATERIALS
Product Number
Brand
Product Description

Latex beads, polystyrene, 3.0 μm mean particle size