- Genome analyses of uncultured TG2/ZB3 bacteria in 'Margulisbacteria' specifically attached to ectosymbiotic spirochetes of protists in the termite gut.
Genome analyses of uncultured TG2/ZB3 bacteria in 'Margulisbacteria' specifically attached to ectosymbiotic spirochetes of protists in the termite gut.
We investigated the phylogenetic diversity, localisation and metabolism of an uncultured bacterial clade, Termite Group 2 (TG2), or ZB3, in the termite gut, which belongs to the candidate phylum 'Margulisbacteria'. We performed 16S rRNA amplicon sequencing analysis and detected TG2/ZB3 sequences in 40 out of 72 termite and cockroach species, which exclusively constituted a monophyletic cluster in the TG2/ZB3 clade. Fluorescence in situ hybridisation analysis in lower termites revealed that these bacteria are specifically attached to ectosymbiotic spirochetes of oxymonad gut protists. Draft genomes of four TG2/ZB3 phylotypes from a small number of bacterial cells were reconstructed, and functional genome analysis suggested that these bacteria hydrolyse and ferment cellulose/cellobiose to H2, CO2, acetate and ethanol. We also assembled a draft genome for a partner Treponema spirochete and found that it encoded genes for reductive acetogenesis from H2 and CO2. We hypothesise that the TG2/ZB3 bacteria we report here are commensal or mutualistic symbionts of the spirochetes, exploiting the spirochetes as H2 sinks. For these bacteria, we propose a novel genus, 'Candidatus Termititenax', which represents a hitherto uncharacterised class-level clade in 'Margulisbacteria'. Our findings add another layer, i.e., cellular association between bacteria, to the multi-layered symbiotic system in the termite gut.