Skip to Content
Merck
  • The carboxyl terminal mutational hotspot of the ciliary disease protein RPGRORF15 (retinitis pigmentosa GTPase regulator) is glutamylated in vivo.

The carboxyl terminal mutational hotspot of the ciliary disease protein RPGRORF15 (retinitis pigmentosa GTPase regulator) is glutamylated in vivo.

Biology open (2016-03-05)
Kollu N Rao, Manisha Anand, Hemant Khanna
ABSTRACT

Mutations inRPGR(ORF15)(retinitis pigmentosa GTPase regulator) are a major cause of inherited retinal degenerative diseases. RPGR(ORF15)(1152 residues) is a ciliary protein involved in regulating the composition and function of photoreceptor cilia. The mutational hotspot in RPGR(ORF15)is an unusual C-terminal domain encoded by exon ORF15, which is rich in polyglutamates and glycine residues (Glu-Gly domain) followed by a short stretch of basic amino acid residues (RPGR(C2)domain; residues 1072-1152). However, the properties of the ORF15-encoded domain and its involvement in the pathogenesis of the disease are unclear. Here we show that RPGR(ORF15)is glutamylated at the C-terminus, as determined by binding to GT335, which recognizes glutamylated substrates. This reactivity is lost in two mouse mutants ofRpgr, which do not express RPGR(ORF15)due to disease-causing mutations in exon ORF15. Our results indicate that RPGR(ORF15)is posttranslationally glutamylated in the Glu-Gly domain and that the GT335 antibody predominantly recognizes RPGR(ORF15)in photoreceptor cilia.