Skip to Content
Merck
  • Downregulation of mitochondrial cyclooxygenase-2 inhibits the stemness of nasopharyngeal carcinoma by decreasing the activity of dynamin-related protein 1.

Downregulation of mitochondrial cyclooxygenase-2 inhibits the stemness of nasopharyngeal carcinoma by decreasing the activity of dynamin-related protein 1.

Theranostics (2017-04-25)
Teng-Jian Zhou, Shi-Li Zhang, Cheng-Yong He, Qun-Ying Zhuang, Pei-Yu Han, Sheng-Wei Jiang, Huan Yao, Yi-Jun Huang, Wen-Hua Ling, Yu-Chun Lin, Zhong-Ning Lin
ABSTRACT

Cancer stem cells (CSCs) are a small subset of malignant cells, possessing stemness, with strong tumorigenic capability, conferring resistance to therapy and leading to the relapse of nasopharyngeal carcinoma (NPC). Our previous study suggested that cyclooxygenase-2 (COX-2) would be a novel target for the CSCs-like side population (SP) cells in NPC. In the present study, we further found that COX-2 maintained the stemness of NPC by enhancing the activity of mitochondrial dynamin-related protein 1 (Drp1), a mitochondrial fission mediator, by studying both sorted SP cells from NPC cell lines and gene expression analyses in NPC tissues. Using both overexpression and knockdown of COX-2, we demonstrated that the localization of COX-2 at mitochondria promotes the stemness of NPC by recruiting the mitochondrial translocation of p53, increasing the activity of Drp1 and inducing mitochondrial fisson. Inhibition of the expression or the activity of Drp1 by siRNA or Mdivi-1 downregulates the stemness of NPC. The present study also found that inhibition of mitochondrial COX-2 with resveratrol (RSV), a natural phytochemical, increased the sensitivity of NPC to 5-fluorouracil (5-FU), a classical chemotherapy drug for NPC. The underlying mechanism is that RSV suppresses mitochondrial COX-2, thereby reducing NPC stemness by inhibiting Drp1 activity as demonstrated in both the in vitro and the in vivo studies. Taken together, the results of this study suggest that mitochondrial COX-2 is a potential theranostic target for the CSCs in NPC. Inhibition of mitochondrial COX-2 could be an attractive therapeutic option for the effective clinical treatment of therapy-resistant NPC.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Duolink® In Situ Wash Buffers, Fluorescence
Sigma-Aldrich
Duolink® In Situ Wash Buffer, Brightfield
Sigma-Aldrich
Duolink® In Situ PLA® Probe Anti-Goat PLUS
Sigma-Aldrich
Duolink® In Situ PLA® Probe Anti-Rabbit MINUS
Sigma-Aldrich
Duolink® In Situ Detection Reagents Green
Sigma-Aldrich
Duolink® flowPLA Detection Kit - FarRed, Duolink® PLA kit for Flow Cytometry with FarRed Detection
Sigma-Aldrich
Duolink® In Situ Detection Reagents FarRed
Sigma-Aldrich
Duolink® In Situ PLA® Probe Anti-Mouse PLUS
Sigma-Aldrich
Duolink® In Situ Probemaker MINUS
Sigma-Aldrich
Duolink® In Situ Detection Reagents Orange
Sigma-Aldrich
Duolink® In Situ Detection Reagents Brightfield
Sigma-Aldrich
Duolink® flowPLA Detection Kit - Orange, Duolink® PLA kit for Flow Cytometry with Orange Detection
Sigma-Aldrich
Duolink® In Situ Orange Starter Kit Mouse/Rabbit
Sigma-Aldrich
Duolink® In Situ Mounting Medium with DAPI
Sigma-Aldrich
Duolink® In Situ Microplate Nuclear Stain, Anti-Fade
Sigma-Aldrich
Duolink® In Situ PLA® Probe Anti-Rabbit PLUS, Affinity purified Donkey anti-Rabbit IgG (H+L)
Sigma-Aldrich
Duolink® In Situ PLA® Probe Anti-Mouse MINUS, Affinity purified Donkey anti-Mouse IgG (H+L)
Sigma-Aldrich
Duolink® In Situ Microplate Heat Transfer Block
Sigma-Aldrich
Duolink® In Situ PLA® Probe Anti-Goat MINUS, Affinity purified Donkey anti-Goat IgG (H+L)
Sigma-Aldrich
Duolink® In Situ Orange Starter Kit Goat/Rabbit
Sigma-Aldrich
Duolink® flowPLA Detection Kit - Red, DUOLINK® : PLA kit for Flow Cytometry with Red Detection
Sigma-Aldrich
Duolink® In Situ Detection Reagents Red
Sigma-Aldrich
Duolink® In Situ Probemaker PLUS
Sigma-Aldrich
Duolink® In Situ Red Starter Kit Mouse/Rabbit
Sigma-Aldrich
Duolink® In Situ Red Starter Kit Mouse/Goat
Sigma-Aldrich
Duolink® In Situ Orange Starter Kit Mouse/Goat