Skip to Content
Merck
  • Epigenetic control of metastasis-associated protein 1 gene expression by hepatitis B virus X protein during hepatocarcinogenesis.

Epigenetic control of metastasis-associated protein 1 gene expression by hepatitis B virus X protein during hepatocarcinogenesis.

Oncogenesis (2012-01-01)
M-H Lee, H Na, T-Y Na, Y-K Shin, J-K Seong, M-O Lee
ABSTRACT

Expression of metastasis-associated protein 1 (MTA1) gene correlates with the degree of invasion and metastasis in hepatocellular carcinoma (HCC). Expression of MTA1 is induced by hepatitis B virus X protein (HBx); however, little is known about the transcriptional regulation of MTA1 gene expression. Here, we report that the 5'-flanking region of the human MTA1 promoter contains two CpG islands. Transient expression of HBx in Chang liver cells increased the methylation of the CpG island1 from 18 to 49% when measured by bisulfite-modified direct sequencing. Chromatin immunoprecipitation showed that HBx recruited DNA methyltransferase 3a (DNMT3a) and DNMT3b to the CpG island1. In silico analysis of CpG island1 predicted the existence of putative p53-binding sequences. p53 was pulled down by a DNA probe encoding the p53-binding sequences but not by the methylated DNA probe. The mouse MTA1 promoter also contains a CpG island encoding a p53-binding sequence of which p53 binding was decreased in the presence of HBx, and the expression of MTA1 and DNMT3 was increased in the liver of HBx-transgenic mice. Comparison of MTA1 and DNMT3a expression in the human normal liver and HCC specimens produced a significant correlation coefficient >0.5 (r=0.5686, P=0.0001) for DNMT3a, and a marginally significant coefficient (r=0.3162, P=0.0103) for DNMT3b. These data show that HBx induces methylation of CpG island in the MTA1 promoter, which interferes with DNA binding of p53 in the specific DNA region. This result may explain the molecular mechanism responsible for the induction of MTA1 gene expression by HBx.