Skip to Content
Merck

A Bacterial Effector Mimics a Host HSP90 Client to Undermine Immunity.

Cell (2019-09-17)
Victor A Lopez, Brenden C Park, Dominika Nowak, Anju Sreelatha, Patrycja Zembek, Jessie Fernandez, Kelly A Servage, Marcin Gradowski, Jacek Hennig, Diana R Tomchick, Krzysztof Pawłowski, Magdalena Krzymowska, Vincent S Tagliabracci
ABSTRACT

The molecular chaperone HSP90 facilitates the folding of several client proteins, including innate immune receptors and protein kinases. HSP90 is an essential component of plant and animal immunity, yet pathogenic strategies that directly target the chaperone have not been described. Here, we identify the HopBF1 family of bacterial effectors as eukaryotic-specific HSP90 protein kinases. HopBF1 adopts a minimal protein kinase fold that is recognized by HSP90 as a host client. As a result, HopBF1 phosphorylates HSP90 to completely inhibit the chaperone's ATPase activity. We demonstrate that phosphorylation of HSP90 prevents activation of immune receptors that trigger the hypersensitive response in plants. Consequently, HopBF1-dependent phosphorylation of HSP90 is sufficient to induce severe disease symptoms in plants infected with the bacterial pathogen, Pseudomonas syringae. Collectively, our results uncover a family of bacterial effector kinases with toxin-like properties and reveal a previously unrecognized betrayal mechanism by which bacterial pathogens modulate host immunity.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Ponceau S, BioReagent, suitable for electrophoresis
Sigma-Aldrich
Monoclonal ANTI-FLAG® M2 antibody produced in mouse, clone M2, purified immunoglobulin (Purified IgG1 subclass), buffered aqueous solution (10 mM sodium phosphate, 150 mM NaCl, pH 7.4, containing 0.02% sodium azide)
Sigma-Aldrich
3′,5′-Dimethoxy-4′-hydroxyacetophenone, 97%
Sigma-Aldrich
Trichloroacetic acid solution, 6.1 N
Millipore
ANTI-FLAG® M2 Affinity Gel, purified immunoglobulin, buffered aqueous glycerol solution
Sigma-Aldrich
Anti-GAPDH Mouse mAb (6C5), liquid, clone 6C5, Calbiochem®
Sigma-Aldrich
MISSION® esiRNA, targeting human CDC37