Skip to Content
Merck
  • Nitrate-NRT1.1B-SPX4 cascade integrates nitrogen and phosphorus signalling networks in plants.

Nitrate-NRT1.1B-SPX4 cascade integrates nitrogen and phosphorus signalling networks in plants.

Nature plants (2019-03-27)
Bin Hu, Zhimin Jiang, Wei Wang, Yahong Qiu, Zhihua Zhang, Yongqiang Liu, Aifu Li, Xiaokai Gao, Linchuan Liu, Yangwen Qian, Xiahe Huang, Feifei Yu, Sai Kang, Yiqin Wang, Junpeng Xie, Shouyun Cao, Lianhe Zhang, Yingchun Wang, Qi Xie, Stanislav Kopriva, Chengcai Chu
ABSTRACT

To ensure high crop yields in a sustainable manner, a comprehensive understanding of the control of nutrient acquisition is required. In particular, the signalling networks controlling the coordinated utilization of the two most highly demanded mineral nutrients, nitrogen and phosphorus, are of utmost importance. Here, we reveal a mechanism by which nitrate activates both phosphate and nitrate utilization in rice (Oryza sativa L.). We show that the nitrate sensor NRT1.1B interacts with a phosphate signalling repressor SPX4. Nitrate perception strengthens the NRT1.1B-SPX4 interaction and promotes the ubiquitination and degradation of SPX4 by recruiting NRT1.1B interacting protein 1 (NBIP1), an E3 ubiquitin ligase. This in turn allows the key transcription factor of phosphate signalling, PHR2, to translocate to the nucleus and initiate the transcription of phosphorus utilization genes. Interestingly, the central transcription factor of nitrate signalling, NLP3, is also under the control of SPX4. Thus, nitrate-triggered degradation of SPX4 activates both phosphate- and nitrate-responsive genes, implementing the coordinated utilization of nitrogen and phosphorus.