Skip to Content
Merck
  • Group G Streptococcus Induces an Autoimmune Carditis Mediated by Interleukin 17A and Interferon γ in the Lewis Rat Model of Rheumatic Heart Disease.

Group G Streptococcus Induces an Autoimmune Carditis Mediated by Interleukin 17A and Interferon γ in the Lewis Rat Model of Rheumatic Heart Disease.

The Journal of infectious diseases (2017-12-14)
Suchandan Sikder, Natasha L Williams, Alanna E Sorenson, Md A Alim, Miranda E Vidgen, Nicole J Moreland, Catherine M Rush, Robert S Simpson, Brenda L Govan, Robert E Norton, Madeleine W Cunningham, David J McMillan, Kadaba S Sriprakash, Natkunam Ketheesan
ABSTRACT

Acute rheumatic fever and rheumatic heart disease (ARF/RHD) have long been described as autoimmune sequelae of Streptococcus pyogenes or group A streptococcal (GAS) infection. Both antibody and T-cell responses against immunodominant GAS virulence factors, including M protein, cross-react with host tissue proteins, triggering an inflammatory response leading to permanent heart damage. However, in some ARF/RHD-endemic regions, throat carriage of GAS is low. Because Streptococcus dysgalactiae subspecies equisimilis organisms, also known as β-hemolytic group C streptococci and group G streptococci (GGS), also express M protein, we postulated that streptococci other than GAS may have the potential to initiate or exacerbate ARF/RHD. Using a model initially developed to investigate the uniquely human disease of ARF/RHD, we have discovered that GGS causes interleukin 17A/interferon γ-induced myocarditis and valvulitis, hallmarks of ARF/RHD. Remarkably the histological, immunological, and functional changes in the hearts of rats exposed to GGS are identical to those exposed to GAS. Furthermore, antibody cross-reactivity to cardiac myosin was comparable in both GGS- and GAS-exposed animals, providing additional evidence that GGS can induce and/or exacerbate ARF/RHD.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Freund′s Adjuvant, Incomplete, liquid
Sigma-Aldrich
Freund′s Adjuvant, Complete, cell suspension